I want to generate a bunch (x, y) coordinates from 0 to 2500 that excludes points that are within 200 of each other without recursion.
Right now I have it check through a list of all previous values to see if any are far enough from all the others. This is really inefficient and if I need to generate a large number of points it takes forever.
So how would I go about doing this?
This is a variant on Hank Ditton's suggestion that should be more efficient time- and memory-wise, especially if you're selecting relatively few points out of all possible points. The idea is that, whenever a new point is generated, everything within 200 units of it is added to a set of points to exclude, against which all freshly-generated points are checked.
import random
radius = 200
rangeX = (0, 2500)
rangeY = (0, 2500)
qty = 100 # or however many points you want
# Generate a set of all points within 200 of the origin, to be used as offsets later
# There's probably a more efficient way to do this.
deltas = set()
for x in range(-radius, radius+1):
for y in range(-radius, radius+1):
if x*x + y*y <= radius*radius:
deltas.add((x,y))
randPoints = []
excluded = set()
i = 0
while i<qty:
x = random.randrange(*rangeX)
y = random.randrange(*rangeY)
if (x,y) in excluded: continue
randPoints.append((x,y))
i += 1
excluded.update((x+dx, y+dy) for (dx,dy) in deltas)
print randPoints
I would overgenerate the points, target_N < input_N
, and filter them using a KDTree. For example:
import numpy as np
from scipy.spatial import KDTree
N = 20
pts = 2500*np.random.random((N,2))
tree = KDTree(pts)
print tree.sparse_distance_matrix(tree, 200)
Would give me points that are "close" to each other. From here it should be simple to apply any filter:
(11, 0) 60.843426339
(0, 11) 60.843426339
(1, 3) 177.853472309
(3, 1) 177.853472309
This has been answered, but it's very tangentially related to my work so I took a stab at it. I implemented the algorithm described in this note which I found linked from this blog post. Unfortunately it's not faster than the other proposed methods, but I'm sure there are optimizations to be made.
import numpy as np
import matplotlib.pyplot as plt
def lonely(p,X,r):
m = X.shape[1]
x0,y0 = p
x = y = np.arange(-r,r)
x = x + x0
y = y + y0
u,v = np.meshgrid(x,y)
u[u < 0] = 0
u[u >= m] = m-1
v[v < 0] = 0
v[v >= m] = m-1
return not np.any(X[u[:],v[:]] > 0)
def generate_samples(m=2500,r=200,k=30):
# m = extent of sample domain
# r = minimum distance between points
# k = samples before rejection
active_list = []
# step 0 - initialize n-d background grid
X = np.ones((m,m))*-1
# step 1 - select initial sample
x0,y0 = np.random.randint(0,m), np.random.randint(0,m)
active_list.append((x0,y0))
X[active_list[0]] = 1
# step 2 - iterate over active list
while active_list:
i = np.random.randint(0,len(active_list))
rad = np.random.rand(k)*r+r
theta = np.random.rand(k)*2*np.pi
# get a list of random candidates within [r,2r] from the active point
candidates = np.round((rad*np.cos(theta)+active_list[i][0], rad*np.sin(theta)+active_list[i][1])).astype(np.int32).T
# trim the list based on boundaries of the array
candidates = [(x,y) for x,y in candidates if x >= 0 and y >= 0 and x < m and y < m]
for p in candidates:
if X[p] < 0 and lonely(p,X,r):
X[p] = 1
active_list.append(p)
break
else:
del active_list[i]
return X
X = generate_samples(2500, 200, 10)
s = np.where(X>0)
plt.plot(s[0],s[1],'.')
And the results: