I have a standard tensorflow Estimator with some model and want to run it on multiple GPUs instead of just one. How can this be done using data parallelism?
I searched the Tensorflow Docs but did not find an example; only sentences saying that it would be easy with Estimator.
Does anybody have a good example using the tf.learn.Estimator? Or a link to a tutorial or so?
I think tf.contrib.estimator.replicate_model_fn is a cleaner solution. The following is from tf.contrib.estimator.replicate_model_fn documentation,
...
def model_fn(...): # See `model_fn` in `Estimator`.
loss = ...
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)
if mode == tf.estimator.ModeKeys.TRAIN:
# See the section below on `EstimatorSpec.train_op`.
return EstimatorSpec(mode=mode, loss=loss,
train_op=optimizer.minimize(loss))
# No change for `ModeKeys.EVAL` or `ModeKeys.PREDICT`.
return EstimatorSpec(...)
...
classifier = tf.estimator.Estimator(
model_fn=tf.contrib.estimator.replicate_model_fn(model_fn))
What you need to do is to wrap optimizer with tf.contrib.estimator.TowerOptimize
and model_fn()
with tf.contrib.estimator.replicate_model_fn()
.
I followed the description and make an TPU squeezenet model work on a machine with 4 GPUs. My modifications here.
The standard example is: https://github.com/tensorflow/tensorflow/blob/r1.4/tensorflow/contrib/learn/python/learn/estimators/estimator.py
One way to run it data-parallel would be to loop over available GPU devices, and send chunks of your batch to copied versions of your model (all done within your model_fn), then merge the results.
You can use scope and device for that:
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(FLAGS.num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
Full example there:
https://github.com/tensorflow/models/blob/master/tutorials/image/cifar10/cifar10_multi_gpu_train.py