I am making my own Lisp-like interpreted language, and I want to do tail call optimization. I want to free my interpreter from the C stack so I can manage my own jumps from function to function and my own stack magic to achieve TCO. (I really don't mean stackless per se, just the fact that calls don't add frames to the C stack. I would like to use a stack of my own that does not grow with tail calls). Like Stackless Python, and unlike Ruby or... standard Python I guess.
But, as my language is a Lisp derivative, all evaluation of s-expressions is currently done recursively (because it's the most obvious way I thought of to do this nonlinear, highly hierarchical process). I have an eval function, which calls a Lambda::apply function every time it encounters a function call. The apply function then calls eval to execute the body of the function, and so on. Mutual stack-hungry non-tail C recursion. The only iterative part I currently use is to eval a body of sequential s-expressions.
(defun f (x y)
(a x y)) ; tail call! goto instead of call.
; (do not grow the stack, keep return addr)
(defun a (x y)
(+ x y))
; ...
(print (f 1 2)) ; how does the return work here? how does it know it's supposed to
; return the value here to be used by print, and how does it know
; how to continue execution here??
So, how do I avoid using C recursion? Or can I use some kind of goto that jumps across c functions? longjmp, perhaps? I really don't know. Please bear with me, I am mostly self- (Internet- ) taught in programming.
One solution is what is sometimes called "trampolined style". The trampoline is a top-level loop that dispatches to small functions that do some small step of computation before returning.
I've sat here for nearly half an hour trying to contrive a good, short example. Unfortunately, I have to do the unhelpful thing and send you to a link:
http://en.wikisource.org/wiki/Scheme:_An_Interpreter_for_Extended_Lambda_Calculus/Section_5
The paper is called "Scheme: An Interpreter for Extended Lambda Calculus", and section 5 implements a working scheme interpreter in an outdated dialect of Lisp. The secret is in how they use the **CLINK** instead of a stack. The other globals are used to pass data around between the implementation functions like the registers of a CPU. I would ignore **QUEUE**, **TICK**, and **PROCESS**, since those deal with threading and fake interrupts. **EVLIS** and **UNEVLIS** are, specifically, used to evaluate function arguments. Unevaluated args are stored in **UNEVLIS**, until they are evaluated and out into **EVLIS**.
Functions to pay attention to, with some small notes:
MLOOP: MLOOP is the main loop of the interpreter, or "trampoline". Ignoring **TICK**, its only job is to call whatever function is in **PC**. Over and over and over.
SAVEUP: SAVEUP conses all the registers onto the **CLINK**, which is basically the same as when C saves the registers to the stack before a function call. The **CLINK** is actually a "continuation" for the interpreter. (A continuation is just the state of a computation. A saved stack frame is technically continuation, too. Hence, some Lisps save the stack to the heap to implement call/cc.)
RESTORE: RESTORE restores the "registers" as they were saved in the **CLINK**. It's similar to restoring a stack frame in a stack-based language. So, it's basically "return", except some function has explicitly stuck the return value into **VALUE**. (**VALUE** is obviously not clobbered by RESTORE.) Also note that RESTORE doesn't always have to return to a calling function. Some functions will actually SAVEUP a whole new computation, which RESTORE will happily "restore".
AEVAL: AEVAL is the EVAL function.
EVLIS: EVLIS exists to evaluate a function's arguments, and apply a function to those args. To avoid recursion, it SAVEUPs EVLIS-1. EVLIS-1 would just be regular old code after the function application if the code was written recursively. However, to avoid recursion, and the stack, it is a separate "continuation".
I hope I've been of some help. I just wish my answer (and link) was shorter.
What you're looking for is called continuation-passing style. This style adds an additional item to each function call (you could think of it as a parameter, if you like), that designates the next bit of code to run (the continuation k
can be thought of as a function that takes a single parameter). For example you can rewrite your example in CPS like this:
(defun f (x y k)
(a x y k))
(defun a (x y k)
(+ x y k))
(f 1 2 print)
The implementation of +
will compute the sum of x
and y
, then pass the result to k
sort of like (k sum)
.
Your main interpreter loop then doesn't need to be recursive at all. It will, in a loop, apply each function application one after another, passing the continuation around.
It takes a little bit of work to wrap your head around this. I recommend some reading materials such as the excellent SICP.
Tail recursion can be thought of as reusing for the callee the same stack frame that you are currently using for the caller. So you could just re-set the arguments and goto to the beginning of the function.