How to improve the label placement for matplotlib

2019-01-06 12:29发布

问题:

I use matplotlib to plot a scatter chart:

And label the bubble using a transparent box according to the tip at matplotlib: how to annotate point on a scatter automatically placed arrow?

Here is the code:

if show_annote:
    for i in range(len(x)):
        annote_text = annotes[i][0][0]  # STK_ID
        ax.annotate(annote_text, xy=(x[i], y[i]), xytext=(-10,3),
            textcoords='offset points', ha='center', va='bottom',
            bbox=dict(boxstyle='round,pad=0.2', fc='yellow', alpha=0.2),
            fontproperties=ANNOTE_FONT) 

and the resulting plot:

But there is still room for improvement to reduce overlap (for instance the label box offset is fixed as (-10,3)). Are there algorithms that can:

  1. dynamically change the offset of label box according to the crowdedness of its neighbourhood
  2. dynamically place the label box remotely and add an arrow line beween bubble and label box
  3. somewhat change the label orientation
  4. label_box overlapping bubble is better than label_box overlapping label_box?

I just want to make the chart easy for human eyes to comprehand, so some overlap is OK, not as rigid a constraint as http://en.wikipedia.org/wiki/Automatic_label_placement suggests. And the bubble quantity within the chart is less than 150 most of the time.

I find the so called Force-based label placement http://bl.ocks.org/MoritzStefaner/1377729 is quite interesting. I don't know if there is any python code/package available to implement the algorithm.

I am not an academic guy and not looking for an optimum solution, and my python codes need to label many many charts, so the the speed/memory is in the scope of consideration.

I am looking for a quick and effective solution. Any help (code,algorithm,tips,thoughts) on this subject? Thanks.

回答1:

It is a little rough around the edges (I can't quite figure out how to scale the relative strengths of the spring network vs the repulsive force, and the bounding box is a bit screwed up), but this is a decent start:

import networkx as nx

N = 15
scatter_data = rand(3, N)
G=nx.Graph()

data_nodes = []
init_pos = {}
for j, b in enumerate(scatter_data.T):
    x, y, _ = b
    data_str = 'data_{0}'.format(j)
    ano_str = 'ano_{0}'.format(j)
    G.add_node(data_str)
    G.add_node(ano_str)
    G.add_edge(data_str, ano_str)
    data_nodes.append(data_str)
    init_pos[data_str] = (x, y)
    init_pos[ano_str] = (x, y)

pos = nx.spring_layout(G, pos=init_pos, fixed=data_nodes)
ax = gca()
ax.scatter(scatter_data[0], scatter_data[1], c=scatter_data[2], s=scatter_data[2]*150)

for j in range(N):
    data_str = 'data_{0}'.format(j)
    ano_str = 'ano_{0}'.format(j)
    ax.annotate(ano_str,
                xy=pos[data_str], xycoords='data',
                xytext=pos[ano_str], textcoords='data',
                arrowprops=dict(arrowstyle="->",
                                connectionstyle="arc3"))

all_pos = np.vstack(pos.values())
mins = np.min(all_pos, 0)
maxs = np.max(all_pos, 0)

ax.set_xlim([mins[0], maxs[0]])
ax.set_ylim([mins[1], maxs[1]])

draw()

How well it works depends a bit on how your data is clustered.



回答2:

The following builds on tcaswell's answer.

Networkx layout methods such as nx.spring_layout rescale the positions so that they all fit in a unit square (by default). Even the position of the fixed data_nodes are rescaled. So, to apply the pos to the original scatter_data, an unshifting and unscaling must be performed.

Note also that nx.spring_layout has a k parameter which controls the optimal distance between nodes. As k increases, so does the distance of the annotations from the data points.

import numpy as np
import matplotlib.pyplot as plt
import networkx as nx
np.random.seed(2016)

N = 20
scatter_data = np.random.rand(N, 3)*10


def repel_labels(ax, x, y, labels, k=0.01):
    G = nx.DiGraph()
    data_nodes = []
    init_pos = {}
    for xi, yi, label in zip(x, y, labels):
        data_str = 'data_{0}'.format(label)
        G.add_node(data_str)
        G.add_node(label)
        G.add_edge(label, data_str)
        data_nodes.append(data_str)
        init_pos[data_str] = (xi, yi)
        init_pos[label] = (xi, yi)

    pos = nx.spring_layout(G, pos=init_pos, fixed=data_nodes, k=k)

    # undo spring_layout's rescaling
    pos_after = np.vstack([pos[d] for d in data_nodes])
    pos_before = np.vstack([init_pos[d] for d in data_nodes])
    scale, shift_x = np.polyfit(pos_after[:,0], pos_before[:,0], 1)
    scale, shift_y = np.polyfit(pos_after[:,1], pos_before[:,1], 1)
    shift = np.array([shift_x, shift_y])
    for key, val in pos.items():
        pos[key] = (val*scale) + shift

    for label, data_str in G.edges():
        ax.annotate(label,
                    xy=pos[data_str], xycoords='data',
                    xytext=pos[label], textcoords='data',
                    arrowprops=dict(arrowstyle="->",
                                    shrinkA=0, shrinkB=0,
                                    connectionstyle="arc3", 
                                    color='red'), )
    # expand limits
    all_pos = np.vstack(pos.values())
    x_span, y_span = np.ptp(all_pos, axis=0)
    mins = np.min(all_pos-x_span*0.15, 0)
    maxs = np.max(all_pos+y_span*0.15, 0)
    ax.set_xlim([mins[0], maxs[0]])
    ax.set_ylim([mins[1], maxs[1]])

fig, ax = plt.subplots()
ax.scatter(scatter_data[:, 0], scatter_data[:, 1],
           c=scatter_data[:, 2], s=scatter_data[:, 2] * 150)
labels = ['ano_{}'.format(i) for i in range(N)]
repel_labels(ax, scatter_data[:, 0], scatter_data[:, 1], labels, k=0.008)

plt.show()

with k=0.011 yields

and with k=0.008 yields



回答3:

Another option using my library adjustText, written specially for this purpose (https://github.com/Phlya/adjustText).

from adjustText import adjust_text
np.random.seed(2016)

N = 50
scatter_data = np.random.rand(N, 3)
fig, ax = plt.subplots()
ax.scatter(scatter_data[:, 0], scatter_data[:, 1],
           c=scatter_data[:, 2], s=scatter_data[:, 2] * 150)
labels = ['ano_{}'.format(i) for i in range(N)]
texts = []
for x, y, text in zip(scatter_data[:, 0], scatter_data[:, 1], labels):
    texts.append(ax.text(x, y, text))
plt.show()

np.random.seed(2016)

N = 50
scatter_data = np.random.rand(N, 3)
fig, ax = plt.subplots()
ax.scatter(scatter_data[:, 0], scatter_data[:, 1],
           c=scatter_data[:, 2], s=scatter_data[:, 2] * 150)
labels = ['ano_{}'.format(i) for i in range(N)]
texts = []
for x, y, text in zip(scatter_data[:, 0], scatter_data[:, 1], labels):
    texts.append(ax.text(x, y, text))
adjust_text(texts, force_text=0.05, arrowprops=dict(arrowstyle="-|>",
                                                    color='r', alpha=0.5))
plt.show()

It doesn't repel from the bubbles, only from their centers and other texts.