I am trying to determine how many nodes I need for my EMR cluster. As part of best practices the recommendations are:
(Total Mappers needed for your job + Time taken to process) / (per instance capacity + desired time) as outlined here: http://www.slideshare.net/AmazonWebServices/amazon-elastic-mapreduce-deep-dive-and-best-practices-bdt404-aws-reinvent-2013, page 89.
The question is how to determine how many parallel mappers the instance will support since AWS don't publish? https://aws.amazon.com/emr/pricing/
Sorry if i missed something obvious.
Wayne
To determine the number of parallel mappers , you will need to check this documentation from EMR called Task Configuration where EMR had a predefined mapping set of configurations for every instance type which would determine the number of mappers/reducers.
http://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hadoop-task-config.html
For example : Lets say you have 5 m1.xlarge core nodes. According to the default mapred-site.xml configuration values for that instance type from EMR docs, we have
mapreduce.map.memory.mb = 768
yarn.nodemanager.resource.memory-mb = 12288
yarn.scheduler.maximum-allocation-mb = 12288 (same as above)
You can simply divide the later with former setting to get the maximum number of mappers supported by one m1.xlarge node = (12288/768) = 16
So, for the 5 node cluster , it would a max of 16*5 = 80
mappers that can run in parallel (considering a map only job). The same is the case with max parallel Reducers(30). You can do similar math for a combination of mappers and reducers.
So, If you want to run more mappers in parallel , you can either re-size
the cluster or reduce the mapreduce.map.memory.mb
(and its heap mapreduce.map.java.opts
) on every node and restart NM to
To understand what the above mapred-site.xml properties mean and why you do need to do those calculations , you can refer it here :
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
Note : The above calculations and statements are true if EMR stays in its default configuration using YARN capacity scheduler
with DefaultResourceCalculator
. If for example , you configure your capacity scheduler to use DominantResourceCalculator
, it will consider VCPU's + Memory on every nodes (not just memory's) to decide on parallel number of mappers.