I have the following table:
Date Country Class Value
6/1/2010 USA A 45
6/1/2010 Canada A 23
6/1/2010 Brazil B 65
9/1/2010 USA B 47
9/1/2010 Canada A 98
9/1/2010 Brazil B 25
12/1/2010 USA B 14
12/1/2010 Canada A 79
12/1/2010 Brazil A 23
3/1/2011 USA A 84
3/1/2011 Canada B 77
3/1/2011 Brazil A 43
6/1/2011 USA A 45
6/1/2011 Canada A 23
6/1/2011 Brazil B 65
9/1/2011 USA B 47
9/1/2011 Canada A 98
9/1/2011 Brazil B 25
12/1/2011 USA B 14
12/1/2011 Canada A 79
12/1/2011 Brazil A 23
3/1/2012 USA A 84
3/1/2012 Canada B 77
3/1/2012 Brazil A 43
In column "Date" years are divided by the following months - March, June, September and December. I need to group months from June to March as a Fiscal Year and by each Fiscal Year calculate the mean of column "Value" by "Country" and "Class". Could anybody help me to do that?
I am trying to do that using data.table but get the error:
d=data[,list(Val=mean(Value,na.rm=T)),by=list(Country,Class,
Period.grp=cut(Period,list(6/1/2010,3/1/2011,6/1/2011,3/1/2012,
6/1/2012,3/1/2013,6/1/2013,3/1/2014)))]
Error in cut.default(Period, list(6/1/2010, 3/1/2011, 6/1/2011, 3/1/2012, :
'x' must be numeric
Thank you!
I found the answer I was thinking I had written, but it's actually a bit different
# this should "shift" the year calculation 3 months and provide quarter
c('Q1','Q2','Q3','Q4')[ 1+((as.POSIXlt(dates)$mon+3) %/% 3)%%4]
This then pastes the FY with the quarter shifted 6 months, but you may need to adjust because your year specification was ambiguous about "naming the year":
dat$FY_Q <- paste( 1900+as.POSIXlt( dat$dates )$year+
1*(as.POSIXlt( dat$dates )$mon %in% 7:12) ,
c('Q1','Q2','Q3','Q4')[ 1+((as.POSIXlt(dat$dates)$mon-6) %/% 3)%%4]
, sep="-")
dat
Date Country Class Value dates FY_Q
1 6/1/2010 USA A 45 2010-06-01 2010-Q4
2 6/1/2010 Canada A 23 2010-06-01 2010-Q4
3 6/1/2010 Brazil B 65 2010-06-01 2010-Q4
4 9/1/2010 USA B 47 2010-09-01 2011-Q1
5 9/1/2010 Canada A 98 2010-09-01 2011-Q1
6 9/1/2010 Brazil B 25 2010-09-01 2011-Q1
snipped---------
So now do a tapply or aggregate by FY_Q and Country:
> with( dat, aggregate(Value, list(FY_Q, Country),FUN=mean) )
Group.1 Group.2 x
1 2010-Q4 Brazil 65
2 2011-Q1 Brazil 25
3 2011-Q2 Brazil 23
4 2011-Q3 Brazil 43
5 2011-Q4 Brazil 65
6 2012-Q1 Brazil 25
7 2012-Q2 Brazil 23
8 2012-Q3 Brazil 43
9 2010-Q4 Canada 23
10 2011-Q1 Canada 98
11 2011-Q2 Canada 79
12 2011-Q3 Canada 77
13 2011-Q4 Canada 23
14 2012-Q1 Canada 98
15 2012-Q2 Canada 79
16 2012-Q3 Canada 77
17 2010-Q4 USA 45
18 2011-Q1 USA 47
19 2011-Q2 USA 14
20 2011-Q3 USA 84
21 2011-Q4 USA 45
22 2012-Q1 USA 47
23 2012-Q2 USA 14
24 2012-Q3 USA 84
See: Format date-time as seasons in R? for a somewhat similar problem and solutions.
Try:
> dat$fiscal = rep(2011:2015,each=12, length.out=nrow(dat))
>
> aggregate(Value~Country+Class+fiscal, data=dat, mean)
Country Class fiscal Value
1 Brazil A 2011 33.00000
2 Canada A 2011 66.66667
3 USA A 2011 64.50000
4 Brazil B 2011 45.00000
5 Canada B 2011 77.00000
6 USA B 2011 30.50000
7 Brazil A 2012 33.00000
8 Canada A 2012 66.66667
9 USA A 2012 64.50000
10 Brazil B 2012 45.00000
11 Canada B 2012 77.00000
12 USA B 2012 30.50000
For FY2011 etc:
dat$fiscal = paste0('FY',rep(2011:2015,each=12, length.out=nrow(dat)))