可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have to store some message in ElasticSearch integrate with my python program.
Now what I try to store the message is:
d={"message":"this is message"}
for index_nr in range(1,5):
ElasticSearchAPI.addToIndex(index_nr, d)
print d
That means if I have 10 message then I have to repeat my code 10 times.
So what I want to do is try to make a script file or batch file.
I check ElasticSearch Guide, BULK API is possible to use. http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html
The format should be something like below:
{ "index" : { "_index" : "test", "_type" : "type1", "_id" : "1" } }
{ "field1" : "value1" }
{ "delete" : { "_index" : "test", "_type" : "type1", "_id" : "2" } }
{ "create" : { "_index" : "test", "_type" : "type1", "_id" : "3" } }
{ "field1" : "value3" }
{ "update" : {"_id" : "1", "_type" : "type1", "_index" : "index1"} }
{ "doc" : {"field2" : "value2"} }
what I did is:
{"index":{"_index":"test1","_type":"message","_id":"1"}}
{"message":"it is red"}
{"index":{"_index":"test2","_type":"message","_id":"2"}}
{"message":"it is green"}
I also use curl tool to store the doc.
$ curl -s -XPOST localhost:9200/_bulk --data-binary @message.json
Now I want to use my Python code to store the file to the Elastic Search.
回答1:
from datetime import datetime
from elasticsearch import Elasticsearch
from elasticsearch import helpers
es = Elasticsearch()
actions = [
{
"_index": "tickets-index",
"_type": "tickets",
"_id": j,
"_source": {
"any":"data" + str(j),
"timestamp": datetime.now()}
}
for j in range(0, 10)
]
helpers.bulk(es, actions)
回答2:
Although @justinachen 's code helped me start with py-elasticseearch, after looking in the source code let me do a simple improvement:
es = Elasticsearch()
j = 0
actions = []
while (j <= 10):
action = {
"_index": "tickets-index",
"_type": "tickets",
"_id": j,
"_source": {
"any":"data" + str(j),
"timestamp": datetime.now()
}
}
actions.append(action)
j += 1
helpers.bulk(es, actions)
helpers.bulk()
already does the segmentation for you. And by segmentation I mean the chucks sent every time to the server. If you want to reduce the chunk of sent documents do: helpers.bulk(es, actions, chunk_size=100)
Some handy info to get started:
helpers.bulk()
is just a wrapper of the helpers.streaming_bulk
but the first accepts a list which makes it handy.
helpers.streaming_bulk
has been based on Elasticsearch.bulk()
so you do not need to worry about what to choose.
So in most cases helpers.bulk() should be all you need.
回答3:
(the other approaches mentioned in this thread use python list for the ES update, which is not a good solution today, especially when you need to add millions of data to ES)
Better approach is using python generators -- process gigs of data without going out of memory or compromising much on speed.
Below is an example snippet from a practical use case - adding data from nginx log file to ES for analysis.
def decode_nginx_log(_nginx_fd):
for each_line in _nginx_fd:
# Filter out the below from each log line
remote_addr = ...
timestamp = ...
...
# Index for elasticsearch. Typically timestamp.
idx = ...
es_fields_keys = ('remote_addr', 'timestamp', 'url', 'status')
es_fields_vals = (remote_addr, timestamp, url, status)
# We return a dict holding values from each line
es_nginx_d = dict(zip(es_fields_keys, es_fields_vals))
# Return the row on each iteration
yield idx, es_nginx_d # <- Note the usage of 'yield'
def es_add_bulk(nginx_file):
# The nginx file can be gzip or just text. Open it appropriately.
...
es = Elasticsearch(hosts = [{'host': 'localhost', 'port': 9200}])
# NOTE the (...) round brackets. This is for a generator.
k = ({
"_index": "nginx",
"_type" : "logs",
"_id" : idx,
"_source": es_nginx_d,
} for idx, es_nginx_d in decode_nginx_log(_nginx_fd))
helpers.bulk(es, k)
# Now, just run it.
es_add_bulk('./nginx.1.log.gz')
This skeleton demonstrates the usage of generators. You can use this even on a bare machine if you need to. And you can go on expanding on this to tailor to your needs quickly.
Python Elasticsearch reference here.
回答4:
Define index name and document type with each entity:
es_client = Elasticsearch()
body = []
for entry in entries:
body.append({'index': {'_index': index, '_type': 'doc', '_id': entry['id']}})
body.append(entry)
response = es_client.bulk(body=body)
Provide the default index and document type with the method:
es_client = Elasticsearch()
body = []
for entry in entries:
body.append({'index': {'_id': entry['id']}})
body.append(entry)
response = es_client.bulk(index='my_index', doc_type='doc', body=body)
Works with:
ES version:6.4.0
ES python lib: 6.3.1