I have this function:
bool interpolate(const Mat &im, float ofsx, float ofsy, float a11, float a12, float a21, float a22, Mat &res)
{
bool ret = false;
// input size (-1 for the safe bilinear interpolation)
const int width = im.cols-1;
const int height = im.rows-1;
// output size
const int halfWidth = res.cols >> 1;
const int halfHeight = res.rows >> 1;
float *out = res.ptr<float>(0);
const float *imptr = im.ptr<float>(0);
for (int j=-halfHeight; j<=halfHeight; ++j)
{
const float rx = ofsx + j * a12;
const float ry = ofsy + j * a22;
#pragma omp simd
for(int i=-halfWidth; i<=halfWidth; ++i, out++)
{
float wx = rx + i * a11;
float wy = ry + i * a21;
const int x = (int) floor(wx);
const int y = (int) floor(wy);
if (x >= 0 && y >= 0 && x < width && y < height)
{
// compute weights
wx -= x; wy -= y;
int rowOffset = y*im.cols;
int rowOffset1 = (y+1)*im.cols;
// bilinear interpolation
*out =
(1.0f - wy) * ((1.0f - wx) * imptr[rowOffset+x] + wx * imptr[rowOffset+x+1]) +
( wy) * ((1.0f - wx) * imptr[rowOffset1+x] + wx * imptr[rowOffset1+x+1]);
} else {
*out = 0;
ret = true; // touching boundary of the input
}
}
}
return ret;
}
halfWidth
is very random: it can be 9, 84, 20, 95, 111...I'm only trying to optimize this code, I don't understand it in details.
As you can see, the inner for
has been already vectorized, but Intel Advisor suggests this:
And this is the Trip Count analysis result:
To my understand this means that:
- Vector length is 8, so it means that 8 floats can be processed at the same time for each loop. This would mean (if I'm not wrong) that data are 32 bytes aligned (even though as I explain here it seems that the compiler think that data is not aligned).
- On average, 2 cycles are totally vectorized, while 3 cycles are remainder loops. The same goes for Min and Max. Otherwise I don't understand what
;
means.
Now my question is: how can I follow Intel Advisor first suggestion? It says to "increase the size of objects and add iterations so the trip count is a multiple of vector length"...Ok, so it's simply sayin' "hey man do this so halfWidth*2
+1 (since it goes from -halfWidth
to +halfWidth
is a multiple of 8)". But how can I do this? If I add random cycles, this would obviously break the algorithm!
The only solution that came to my mind is to add "fake" iterations like this:
const int vectorLength = 8;
const int iterations = halfWidth*2+1;
const int remainder = iterations%vectorLength;
for(int i=0; i<loop+length-remainder; i++){
//this iteration was not supposed to exist, skip it!
if(i>halfWidth)
continue;
}
Of course this code would not work since it goes from -halfWidth
to halfWidth
, but it's to make you understand my strategy of "fake" iterations.
About the second option ("Increase the size of static and automatic objects, and use a compiler option to add data padding") I have no idea how to implement this.