TL;DR, I want to know how to use a bi-lstm-ctc tensorflow model in an android application.
I have succeeded in training my bi-lstm-ctc tensorflow model and now I want to use it for my handwriting recognition android application. Here's the part of the code that defines the graph I used:
self.inputs = tf.placeholder(tf.float32, [None, None, network_config.num_features], name="input")
self.labels = tf.sparse_placeholder(tf.int32, name="label")
self.seq_len = tf.placeholder(tf.int32, [None], name="seq_len_input")
logits = self._bidirectional_lstm_layers(
network_config.num_hidden_units,
network_config.num_layers,
network_config.num_classes
)
self.global_step = tf.Variable(0, trainable=False)
self.loss = tf.nn.ctc_loss(labels=self.labels, inputs=logits, sequence_length=self.seq_len)
self.cost = tf.reduce_mean(self.loss)
self.optimizer = tf.train.AdamOptimizer(network_config.learning_rate).minimize(self.cost)
self.decoded, self.log_prob = tf.nn.ctc_beam_search_decoder(inputs=logits, sequence_length=self.seq_len, merge_repeated=False)
self.dense_decoded = tf.sparse_tensor_to_dense(self.decoded[0], default_value=-1, name="output")
I also succeeded in freezing and optimizing the graph following the freeze and optimize graph codes in this tutorial. Here's the part of the code that is supposed to run the model:
bitmap = Bitmap.createScaledBitmap(bitmap, 1024, 128, true);
int[] intValues = new int[bitmap.getWidth() * bitmap.getHeight()];
bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight());
float[] floatValues = new float[bitmap.getWidth() * bitmap.getHeight()];
for (int i = 0; i < intValues.length; ++i) {
final int val = intValues[i];
floatValues[i] = (((val >> 16) & 0xFF));
}
float[] result = new float[80];
long[] INPUT_SIZE = new long[]{1, bitmap.getHeight(), bitmap.getWidth()};
inferenceInterface.feed(config.getInputName(), floatValues, INPUT_SIZE);
inferenceInterface.feed("seq_len_input", new int[]{bitmap.getWidth()}, 1);
inferenceInterface.run(config.getOutputNames());
inferenceInterface.fetch(config.getOutputNames()[0], result);
return result.toString();
However, I encounter these problems depending on the model I use. If I use the frozen graph, I encounter this error:
Caused by: java.lang.IllegalArgumentException: No OpKernel was registered to support
Op 'SparseToDense' with these attrs. Registered devices: [CPU], Registered kernels:
device='CPU'; T in [DT_STRING]; Tindices in [DT_INT64]
device='CPU'; T in [DT_STRING]; Tindices in [DT_INT32]
device='CPU'; T in [DT_BOOL]; Tindices in [DT_INT64]
device='CPU'; T in [DT_BOOL]; Tindices in [DT_INT32]
device='CPU'; T in [DT_FLOAT]; Tindices in [DT_INT64]
device='CPU'; T in [DT_FLOAT]; Tindices in [DT_INT32]
device='CPU'; T in [DT_INT32]; Tindices in [DT_INT64]
device='CPU'; T in [DT_INT32]; Tindices in [DT_INT32]
[[Node: output = SparseToDense[T=DT_INT64, Tindices=DT_INT64, validate_indices=true](CTCBeamSearchDecoder, CTCBeamSearchDecoder:2, CTCBeamSearchDecoder:1, output/default_value)]]
If I use the optimized frozen graph, I encounter this error:
java.io.IOException: Not a valid TensorFlow Graph serialization: NodeDef expected inputs '' do not match 1 inputs
specified; Op<name=Const; signature= -> output:dtype; attr=value:tensor; attr=dtype:type>;
NodeDef: stack_bidirectional_rnn/cell_0/bidirectional_rnn/bw/bw/while/add/y = Const[dtype=DT_INT32,
value=Tensor<type: int32 shape: [] values: 1>](stack_bidirectional_rnn/cell_0/bidirectional_rnn/bw/bw/while/Switch:1)
Aside from the way to address these errors, I have other questions/clarifications:
How do I address these errors?