可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I am trying to execute Random Forest Classifier and evaluate the model using Cross Validation. I work with pySpark. The input CSV file is loaded as Spark DataFrame format.
But I face a issue while constructing the model.
Below is the code.
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.mllib.evaluation import BinaryClassificationMetrics
sc = SparkContext()
sqlContext = SQLContext(sc)
trainingData =(sqlContext.read
.format("com.databricks.spark.csv")
.option("header", "true")
.option("inferSchema", "true")
.load("/PATH/CSVFile"))
numFolds = 10
rf = RandomForestClassifier(numTrees=100, maxDepth=5, maxBins=5, labelCol="V5409",featuresCol="features",seed=42)
evaluator = MulticlassClassificationEvaluator().setLabelCol("V5409").setPredictionCol("prediction").setMetricName("accuracy")
paramGrid = ParamGridBuilder().build()
pipeline = Pipeline(stages=[rf])
paramGrid=ParamGridBuilder().build()
crossval = CrossValidator(
estimator=pipeline,
estimatorParamMaps=paramGrid,
evaluator=evaluator,
numFolds=numFolds)
model = crossval.fit(trainingData)
print accuracy
I am getting below error
Traceback (most recent call last):
File "SparkDF.py", line 41, in <module>
model = crossval.fit(trainingData)
File "/usr/local/spark-2.1.1/python/pyspark/ml/base.py", line 64, in fit
return self._fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/tuning.py", line 236, in _fit
model = est.fit(train, epm[j])
File "/usr/local/spark-2.1.1/python/pyspark/ml/base.py", line 64, in fit
return self._fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/pipeline.py", line 108, in _fit
model = stage.fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/base.py", line 64, in fit
return self._fit(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/wrapper.py", line 236, in _fit
java_model = self._fit_java(dataset)
File "/usr/local/spark-2.1.1/python/pyspark/ml/wrapper.py", line 233, in _fit_java
return self._java_obj.fit(dataset._jdf)
File "/home/hadoopuser/anaconda2/lib/python2.7/site-packages/py4j/java_gateway.py", line 1160, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/usr/local/spark-2.1.1/python/pyspark/sql/utils.py", line 79, in deco
raise IllegalArgumentException(s.split(': ', 1)[1], stackTrace)
pyspark.sql.utils.IllegalArgumentException: u'Field "features" does not exist.'
hadoopuser@rackserver-PowerEdge-R220:~/workspace/RandomForest_CV$
Please help me out to solve this issue in pySpark.
Thank You.
I am showing the details of dataset here.
No I don't have features column specifically. Below is the output of trainingData.take(5) which displays first 5 rows of dataset.
[Row(V4366=0.0, V4460=0.232, V4916=-0.017, V1495=-0.104, V1639=0.005, V1967=-0.008, V3049=0.177, V3746=-0.675, V3869=-3.451, V524=0.004, V5409=0), Row(V4366=0.0, V4460=0.111, V4916=-0.003, V1495=-0.137, V1639=0.001, V1967=-0.01, V3049=0.01, V3746=-0.867, V3869=-2.759, V524=0.0, V5409=0), Row(V4366=0.0, V4460=-0.391, V4916=-0.003, V1495=-0.155, V1639=-0.006, V1967=-0.019, V3049=-0.706, V3746=0.166, V3869=0.189, V524=0.001, V5409=0), Row(V4366=0.0, V4460=0.098, V4916=-0.012, V1495=-0.108, V1639=0.005, V1967=-0.002, V3049=0.033, V3746=-0.787, V3869=-0.926, V524=0.002, V5409=0), Row(V4366=0.0, V4460=0.026, V4916=-0.004, V1495=-0.139, V1639=0.003, V1967=-0.006, V3049=-0.045, V3746=-0.208, V3869=-0.782, V524=0.001, V5409=0)]
where V433 to V524 are features. V5409 is the class label.
回答1:
Spark dataframes are not used like that in Spark ML; all your features need to be vectors in a single column, usually named features
. Here is how you can do it using the 5 rows you have provided as an example:
spark.version
# u'2.2.0'
from pyspark.sql import Row
from pyspark.ml.linalg import Vectors
# your sample data:
temp_df = spark.createDataFrame([Row(V4366=0.0, V4460=0.232, V4916=-0.017, V1495=-0.104, V1639=0.005, V1967=-0.008, V3049=0.177, V3746=-0.675, V3869=-3.451, V524=0.004, V5409=0), Row(V4366=0.0, V4460=0.111, V4916=-0.003, V1495=-0.137, V1639=0.001, V1967=-0.01, V3049=0.01, V3746=-0.867, V3869=-2.759, V524=0.0, V5409=0), Row(V4366=0.0, V4460=-0.391, V4916=-0.003, V1495=-0.155, V1639=-0.006, V1967=-0.019, V3049=-0.706, V3746=0.166, V3869=0.189, V524=0.001, V5409=0), Row(V4366=0.0, V4460=0.098, V4916=-0.012, V1495=-0.108, V1639=0.005, V1967=-0.002, V3049=0.033, V3746=-0.787, V3869=-0.926, V524=0.002, V5409=0), Row(V4366=0.0, V4460=0.026, V4916=-0.004, V1495=-0.139, V1639=0.003, V1967=-0.006, V3049=-0.045, V3746=-0.208, V3869=-0.782, V524=0.001, V5409=0)])
trainingData=temp_df.rdd.map(lambda x:(Vectors.dense(x[0:-1]), x[-1])).toDF(["features", "label"])
trainingData.show()
# +--------------------+-----+
# | features|label|
# +--------------------+-----+
# |[-0.104,0.005,-0....| 0|
# |[-0.137,0.001,-0....| 0|
# |[-0.155,-0.006,-0...| 0|
# |[-0.108,0.005,-0....| 0|
# |[-0.139,0.003,-0....| 0|
# +--------------------+-----+
after which, your pipeline should run fine (I am assuming that indeed you have multi-class classification, since your sample contains only 0's as labels) with only changing the label column in your rf
and evaluator
as follows:
rf = RandomForestClassifier(numTrees=100, maxDepth=5, maxBins=5, labelCol="label",featuresCol="features",seed=42)
evaluator = MulticlassClassificationEvaluator().setLabelCol("label").setPredictionCol("prediction").setMetricName("accuracy")
Finally, print accuracy
will not work - you'll need model.avgMetrics
instead.
回答2:
I would like to add my 5 cents to desertnaut's answer - as for now (Spark 2.2.0) there is quite handy VectorAssembler class which handles the transformation of multiple columns into one vector column. Then the code looks like this:
from pyspark.sql import Row
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import VectorAssembler
# your sample data:
temp_df = spark.createDataFrame([Row(V4366=0.0, V4460=0.232, V4916=-0.017, V1495=-0.104, V1639=0.005, V1967=-0.008, V3049=0.177, V3746=-0.675, V3869=-3.451, V524=0.004, V5409=0), Row(V4366=0.0, V4460=0.111, V4916=-0.003, V1495=-0.137, V1639=0.001, V1967=-0.01, V3049=0.01, V3746=-0.867, V3869=-2.759, V524=0.0, V5409=0), Row(V4366=0.0, V4460=-0.391, V4916=-0.003, V1495=-0.155, V1639=-0.006, V1967=-0.019, V3049=-0.706, V3746=0.166, V3869=0.189, V524=0.001, V5409=0), Row(V4366=0.0, V4460=0.098, V4916=-0.012, V1495=-0.108, V1639=0.005, V1967=-0.002, V3049=0.033, V3746=-0.787, V3869=-0.926, V524=0.002, V5409=0), Row(V4366=0.0, V4460=0.026, V4916=-0.004, V1495=-0.139, V1639=0.003, V1967=-0.006, V3049=-0.045, V3746=-0.208, V3869=-0.782, V524=0.001, V5409=0)])
assembler = VectorAssembler(
inputCols=['V4366', 'V4460', 'V4916', 'V1495', 'V1639', 'V1967', 'V3049', 'V3746', 'V3869', 'V524'],
outputCol='features')
trainingData = assembler.transform(temp_df)
trainingData.show()
# +------+------+------+------+------+------+-----+------+------+-----+-----+--------------------+
# | V1495| V1639| V1967| V3049| V3746| V3869|V4366| V4460| V4916| V524|V5409| features|
# +------+------+------+------+------+------+-----+------+------+-----+-----+--------------------+
# |-0.104| 0.005|-0.008| 0.177|-0.675|-3.451| 0.0| 0.232|-0.017|0.004| 0|[0.0,0.232,-0.017...|
# |-0.137| 0.001| -0.01| 0.01|-0.867|-2.759| 0.0| 0.111|-0.003| 0.0| 0|[0.0,0.111,-0.003...|
# |-0.155|-0.006|-0.019|-0.706| 0.166| 0.189| 0.0|-0.391|-0.003|0.001| 0|[0.0,-0.391,-0.00...|
# |-0.108| 0.005|-0.002| 0.033|-0.787|-0.926| 0.0| 0.098|-0.012|0.002| 0|[0.0,0.098,-0.012...|
# |-0.139| 0.003|-0.006|-0.045|-0.208|-0.782| 0.0| 0.026|-0.004|0.001| 0|[0.0,0.026,-0.004...|
# +------+------+------+------+------+------+-----+------+------+-----+-----+--------------------+
This way it can be easily integrate as a processing step in the pipeline.
Also important difference here is that new features
column is appended to the data frame.