I have the following piece of Matlab code, which calculates Mahalanobis distances between a vector and a matrix with several iterations. I am trying to find a faster method to do this by vectorization but without success.
S.data=0+(20-0).*rand(15000,3);
S.a=0+(20-0).*rand(2500,3);
S.resultat=ones(length(S.data),length(S.a))*nan;
S.b=ones(length(S.a),3,length(S.a))*nan;
for i=1:length(S.data)
for j=1:length(S.a)
S.a2=S.a;
S.a2(j,:)=S.data(i,:);
S.b(:,:,j)=S.a2;
if j==length(S.a)
for k=1:length(S.a);
S.resultat(i,k)=mahal(S.a(k,:),S.b(:,:,k));
end
end
end
end
I have now modified the code and avoid one of the loop. But it is still very long. If someone have an idea, I will be very greatful!
S.data=0+(20-0).*rand(15000,3);
S.a=0+(20-0).*rand(2500,3);
S.resultat=ones(length(S.data),length(S.a))*nan;
for i=1:length(S.data)
for j=1:length(S.a)
S.a2=S.a;
S.a2(j,:)=S.data(i,:);
S.resultat(i,j)=mahal(S.a(j,:),S.a2);
end
end
Introduction and solution code
You can replace the innermost loop that uses mahal
with something that is a bit vectorized, as it uses some pre-calculated values (with the help of bsxfun
) inside a loop-shortened and hacked version of mahal
.
Basically you have a 2D
array, let's call it A
for easy reference and a 3D
array, let's call it B
. Let the output be stored be into a variable out
. So, the innermost code snippet could be extracted and based on the assumed variable names.
Original loopy code
for k=1:size(A,1)
out(k)=mahal(A(k,:),B(:,:,k));
end
So, what I did was to hack into mahal.m
and look for portions that could be vectorized when the inputs are 2D
and 3D
. Now, mahal
uses qr
inside it, which could not be vectorized. Thus, we end up with a hacked code.
Hacked code
%// Pre-calculate certain values that could be avoided than using into loop
meanB = mean(B,1); %// mean of B along dim-1
B_meanB = bsxfun(@minus,B,meanB); %// B minus mean values of B
A_B_meanB = A' - reshape(meanB,size(B,2),[]); %//'# A minus B_meanB
%// QR calculations in a for-loop starts until the output is obtained
for k = 1:size(A,1)
[~,R] = qr(B_meanB(:,:,k),0);
out2(k) = sum((R'\A_B_meanB(:,k)).^2)*(size(A,1)-1);
end
Now, to extend this hack solution to the problem code, one can introduce few more tweaks to pre-calculate more values being used those nested loops.
Final solution code
A = S.a; %// Get data from S
[rx,cx] = size(A); %// Get size parameters
Atr = A'; %//'# Pre-calculate transpose of A
%// Pre-calculate replicated B and the indices to be modified at each iteration
B_rep = repmat(S.a,1,1,rx);
B_idx = bsxfun(@plus,[(0:cx-1)*rx + 1]',[0:rx-1]*(rx*cx+1)); %//'
out = zeros(size(S.data,1),rx); %// initialize output array
for i=1:length(S.data)
B = B_rep;
B(B_idx) = repmat(S.data(i,:)',1,rx); %//'
meanB = mean(B,1); %// mean of B along dim-1
B_meanB = bsxfun(@minus,B,meanB); %// B minus mean values of B
A_B_meanB = Atr - reshape(meanB,3,[]); %// A minus B_meanB
for jj = 1:rx
[~,R] = qr(B_meanB(:,:,jj),0);
out(i,jj) = sum((R'\A_B_meanB(:,jj)).^2)*(rx-1); %//'
end
end
S.resultat = out;
Benchmarking
Here's the benchmarking code to compare the proposed solution against the code listed in the problem -
%// Random inputs
S.data=0+(20-0).*rand(1500,3); %(size 10x reduced for a quicker runtime test)
S.a=0+(20-0).*rand(250,3);
S.resultat=ones(length(S.data),length(S.a))*nan;
disp('----------------------------- With original code')
tic
S.b=ones(length(S.a),3,length(S.a))*nan;
for i=1:length(S.data)
for j=1:length(S.a)
S.a2=S.a;
S.a2(j,:)=S.data(i,:);
S.b(:,:,j)=S.a2;
if j==length(S.a)
for k=1:length(S.a);
S.resultat(i,k)=mahal(S.a(k,:),S.b(:,:,k));
end
end
end
end
toc, clear i j S.a2 k S.resultat
S.resultat=ones(length(S.data),length(S.a))*nan;
disp('----------------------------- With proposed solution code')
tic
[ ... Proposed solution code ...]
toc
Runtimes -
----------------------------- With original code
Elapsed time is 17.734394 seconds.
----------------------------- With proposed solution code
Elapsed time is 6.602860 seconds.
Thus, we might get around 2.7x
speedup with the proposed approach and some tweaks!