let rec merge = function
| ([], ys) -> ys
| (xs, []) -> xs
| (x::xs, y::ys) -> if x < y then x :: merge (xs, y::ys)
else y :: merge (x::xs, ys)
let rec split = function
| [] -> ([], [])
| [a] -> ([a], [])
| a::b::cs -> let (M,N) = split cs
(a::M, b::N)
let rec mergesort = function
| [] -> []
| L -> let (M, N) = split L
merge (mergesort M, mergesort N)
mergesort [5;3;2;1] // Will throw an error.
I took this code from here StackOverflow Question but when I run the mergesort with a list I get an error:
stdin(192,1): error FS0030: Value restriction. The value 'it' has been inferred to have generic type
val it : '_a list when '_a : comparison
How would I fix this problem? What is the problem? The more information, the better (so I can learn :) )
Your mergesort function is missing a case causing the signature to be inferred by the compiler to be 'a list -> 'b list
instead of 'a list -> 'a list
which it should be. The reason it should be 'a list -> 'a list
is that you're not looking to changing the type of the list in mergesort.
Try changing your mergesort function to this, that should fix the problem:
let rec mergesort = function
| [] -> []
| [a] -> [a]
| L -> let (M, N) = split L
merge (mergesort M, mergesort N)
Another problem with your code however is that neither merge nor split is tail recursive and you will therefore get stack overflow exceptions on large lists (try to call the corrected mergesort like this mergesort [for i in 1000000..-1..1 -> i]
).
You can make your split and merge functions tail recursive by using the accumulator pattern
let split list =
let rec aux l acc1 acc2 =
match l with
| [] -> (acc1,acc2)
| [x] -> (x::acc1,acc2)
| x::y::tail ->
aux tail (x::acc1) (y::acc2)
aux list [] []
let merge l1 l2 =
let rec aux l1 l2 result =
match l1, l2 with
| [], [] -> result
| [], h :: t | h :: t, [] -> aux [] t (h :: result)
| h1 :: t1, h2 :: t2 ->
if h1 < h2 then aux t1 l2 (h1 :: result)
else aux l1 t2 (h2 :: result)
List.rev (aux l1 l2 [])
You can read more about the accumulator pattern here; the examples are in lisp but it's a general pattern that works in any language that provides tail call optimization.