I'm trying to create the model shown below with PyMC 3 but can't figure out how to properly map probabilities to the observed data with a lambda function.
import numpy as np
import pymc as pm
data = np.array([[0, 0, 1, 1, 2],
[0, 1, 2, 2, 2],
[2, 2, 1, 1, 0],
[1, 1, 2, 0, 1]])
(D, W) = data.shape
V = len(set(data.ravel()))
T = 3
a = np.ones(T)
b = np.ones(V)
with pm.Model() as model:
theta = [pm.Dirichlet('theta_%s' % i, a, shape=T) for i in range(D)]
z = [pm.Categorical('z_%i' % i, theta[i], shape=W) for i in range(D)]
phi = [pm.Dirichlet('phi_%i' % i, b, shape=V) for i in range(T)]
w = [pm.Categorical('w_%i_%i' % (i, j),
p=lambda z=z[i][j], phi_=phi: phi_[z], # Error is here
observed=data[i, j])
for i in range(D) for j in range(W)]
The error I get is
AttributeError: 'function' object has no attribute 'shape'
In the model I'm attempting to build, the elements of z
indicate which element in phi
gives the probability of the corresponding observed value in data
(placed in RV w
). In other words,
P(data[i,j]) <- phi[z[i,j]][data[i,j]]
I'm guessing I need to define the probability with a Theano expression or use Theano as_op
but I don't see how it can be done for this model.