So I have taken a look at this question posted before which was used for summing every 2 values in each row in a matrix. Here is the link:
sum specific columns among rows. I also took a look at another question here: R Sum every k columns in matrix which is more similiar to mine. I could not get the solution in this case to work. Here is the code that I am working with...
y <- matrix(1:27, nrow = 3)
y
m1 <- as.matrix(y)
n <- 3
dim(m1) <- c(nrow(m1)/n, ncol(m1), n)
res <- matrix(rowSums(apply(m1, 1, I)), ncol=n)
identical(res[1,],rowSums(y[1:3,]))
sapply(split.default(y, 0:(length(y)-1) %/% 3), rowSums)
I just get an error message when applying this. The desired output is a matrix with the following values:
[,1] [,2] [,3]
[1,] 12 39 66
[2,] 15 42 69
[3,] 18 45 72
To sum consecutive sets of n
elements from each row, you just need to write a function that does the summing and apply it to each row:
n <- 3
t(apply(y, 1, function(x) tapply(x, ceiling(seq_along(x)/n), sum)))
# 1 2 3
# [1,] 12 39 66
# [2,] 15 42 69
# [3,] 18 45 72
Transform the matrix to an array and use colSums
(as suggested by @nongkrong):
y <- matrix(1:27, nrow = 3)
n <- 3
a <- y
dim(a) <- c(nrow(a), ncol(a)/n, n)
b <- aperm(a, c(2,1,3))
colSums(b)
# [,1] [,2] [,3]
#[1,] 12 39 66
#[2,] 15 42 69
#[3,] 18 45 72
Of course this assumes that ncol(y)
is divisible by n
.
PS: You can of course avoid creating so many intermediate objects. They are there for didactic purposes.
I would do something similar to the OP -- apply rowSums
on subsets of the matrix:
n = 3
ng = ncol(y)/n
sapply( 1:ng, function(jg) rowSums(y[, (jg-1)*n + 1:n ]))
# [,1] [,2] [,3]
# [1,] 12 39 66
# [2,] 15 42 69
# [3,] 18 45 72