可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I\'m starting with input data like this
df1 = pandas.DataFrame( {
\"Name\" : [\"Alice\", \"Bob\", \"Mallory\", \"Mallory\", \"Bob\" , \"Mallory\"] ,
\"City\" : [\"Seattle\", \"Seattle\", \"Portland\", \"Seattle\", \"Seattle\", \"Portland\"] } )
Which when printed appears as this:
City Name
0 Seattle Alice
1 Seattle Bob
2 Portland Mallory
3 Seattle Mallory
4 Seattle Bob
5 Portland Mallory
Grouping is simple enough:
g1 = df1.groupby( [ \"Name\", \"City\"] ).count()
and printing yields a GroupBy
object:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Seattle 1 1
But what I want eventually is another DataFrame object that contains all the rows in the GroupBy object. In other words I want to get the following result:
City Name
Name City
Alice Seattle 1 1
Bob Seattle 2 2
Mallory Portland 2 2
Mallory Seattle 1 1
I can\'t quite see how to accomplish this in the pandas documentation. Any hints would be welcome.
回答1:
g1
here is a DataFrame. It has a hierarchical index, though:
In [19]: type(g1)
Out[19]: pandas.core.frame.DataFrame
In [20]: g1.index
Out[20]:
MultiIndex([(\'Alice\', \'Seattle\'), (\'Bob\', \'Seattle\'), (\'Mallory\', \'Portland\'),
(\'Mallory\', \'Seattle\')], dtype=object)
Perhaps you want something like this?
In [21]: g1.add_suffix(\'_Count\').reset_index()
Out[21]:
Name City City_Count Name_Count
0 Alice Seattle 1 1
1 Bob Seattle 2 2
2 Mallory Portland 2 2
3 Mallory Seattle 1 1
Or something like:
In [36]: DataFrame({\'count\' : df1.groupby( [ \"Name\", \"City\"] ).size()}).reset_index()
Out[36]:
Name City count
0 Alice Seattle 1
1 Bob Seattle 2
2 Mallory Portland 2
3 Mallory Seattle 1
回答2:
I want to slightly change the answer given by Wes, because version 0.16.2 requires as_index=False
. If you don\'t set it, you get an empty dataframe.
Source:
Aggregation functions will not return the groups that you are aggregating over if they are named columns, when as_index=True
, the default. The grouped columns will be the indices of the returned object.
Passing as_index=False
will return the groups that you are aggregating over, if they are named columns.
Aggregating functions are ones that reduce the dimension of the returned objects, for example: mean
, sum
, size
, count
, std
, var
, sem
, describe
, first
, last
, nth
, min
, max
. This is what happens when you do for example DataFrame.sum()
and get back a Series
.
nth can act as a reducer or a filter, see here.
import pandas as pd
df1 = pd.DataFrame({\"Name\":[\"Alice\", \"Bob\", \"Mallory\", \"Mallory\", \"Bob\" , \"Mallory\"],
\"City\":[\"Seattle\",\"Seattle\",\"Portland\",\"Seattle\",\"Seattle\",\"Portland\"]})
print df1
#
# City Name
#0 Seattle Alice
#1 Seattle Bob
#2 Portland Mallory
#3 Seattle Mallory
#4 Seattle Bob
#5 Portland Mallory
#
g1 = df1.groupby([\"Name\", \"City\"], as_index=False).count()
print g1
#
# City Name
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
#
EDIT:
In version 0.17.1
and later you can use subset
in count
and reset_index
with parameter name
in size
:
print df1.groupby([\"Name\", \"City\"], as_index=False ).count()
#IndexError: list index out of range
print df1.groupby([\"Name\", \"City\"]).count()
#Empty DataFrame
#Columns: []
#Index: [(Alice, Seattle), (Bob, Seattle), (Mallory, Portland), (Mallory, Seattle)]
print df1.groupby([\"Name\", \"City\"])[[\'Name\',\'City\']].count()
# Name City
#Name City
#Alice Seattle 1 1
#Bob Seattle 2 2
#Mallory Portland 2 2
# Seattle 1 1
print df1.groupby([\"Name\", \"City\"]).size().reset_index(name=\'count\')
# Name City count
#0 Alice Seattle 1
#1 Bob Seattle 2
#2 Mallory Portland 2
#3 Mallory Seattle 1
The difference between count
and size
is that size
counts NaN values while count
does not.
回答3:
Simply, this should do the task:
import pandas as pd
grouped_df = df1.groupby( [ \"Name\", \"City\"] )
pd.DataFrame(grouped_df.size().reset_index(name = \"Group_Count\"))
Here, grouped_df.size() pulls up the unique groupby count, and reset_index() method resets the name of the column you want it to be.
Finally, the pandas Dataframe() function is called upon to create DataFrame object.
回答4:
I found this worked for me.
import numpy as np
import pandas as pd
df1 = pd.DataFrame({
\"Name\" : [\"Alice\", \"Bob\", \"Mallory\", \"Mallory\", \"Bob\" , \"Mallory\"] ,
\"City\" : [\"Seattle\", \"Seattle\", \"Portland\", \"Seattle\", \"Seattle\", \"Portland\"]})
df1[\'City_count\'] = 1
df1[\'Name_count\'] = 1
df1.groupby([\'Name\', \'City\'], as_index=False).count()
回答5:
Maybe I misunderstand the question but if you want to convert the groupby back to a dataframe you can use .to_frame(). I wanted to reset the index when I did this so I included that part as well.
example code unrelated to question
df = df[\'TIME\'].groupby(df[\'Name\']).min()
df = df.to_frame()
df = df.reset_index(level=[\'Name\',\"TIME\"])
回答6:
I have aggregated with Qty wise data and store to dataframe
almo_grp_data = pd.DataFrame({\'Qty_cnt\' :
almo_slt_models_data.groupby( [\'orderDate\',\'Item\',\'State Abv\']
)[\'Qty\'].sum()}).reset_index()
回答7:
Below solution may be simpler:
df1.reset_index().groupby( [ \"Name\", \"City\"],as_index=False ).count()
回答8:
These solutions only partially worked for me because I was doing multiple aggregations. Here is a sample output of my grouped by that I wanted to convert to a dataframe:
Because I wanted more than the count provided by reset_index(), I wrote a manual method for converting the image above into a dataframe. I understand this is not the most pythonic/pandas way of doing this as it is quite verbose and explicit, but it was all I needed. Basically, use the reset_index() method explained above to start a \"scaffolding\" dataframe, then loop through the group pairings in the grouped dataframe, retrieve the indices, perform your calculations against the ungrouped dataframe, and set the value in your new aggregated dataframe.
df_grouped = df[[\'Salary Basis\', \'Job Title\', \'Hourly Rate\', \'Male Count\', \'Female Count\']]
df_grouped = df_grouped.groupby([\'Salary Basis\', \'Job Title\'], as_index=False)
# Grouped gives us the indices we want for each grouping
# We cannot convert a groupedby object back to a dataframe, so we need to do it manually
# Create a new dataframe to work against
df_aggregated = df_grouped.size().to_frame(\'Total Count\').reset_index()
df_aggregated[\'Male Count\'] = 0
df_aggregated[\'Female Count\'] = 0
df_aggregated[\'Job Rate\'] = 0
def manualAggregations(indices_array):
temp_df = df.iloc[indices_array]
return {
\'Male Count\': temp_df[\'Male Count\'].sum(),
\'Female Count\': temp_df[\'Female Count\'].sum(),
\'Job Rate\': temp_df[\'Hourly Rate\'].max()
}
for name, group in df_grouped:
ix = df_grouped.indices[name]
calcDict = manualAggregations(ix)
for key in calcDict:
#Salary Basis, Job Title
columns = list(name)
df_aggregated.loc[(df_aggregated[\'Salary Basis\'] == columns[0]) &
(df_aggregated[\'Job Title\'] == columns[1]), key] = calcDict[key]
If a dictionary isn\'t your thing, the calculations could be applied inline in the for loop:
df_aggregated[\'Male Count\'].loc[(df_aggregated[\'Salary Basis\'] == columns[0]) &
(df_aggregated[\'Job Title\'] == columns[1])] = df[\'Male Count\'].iloc[ix].sum()