I pushed up some test data to gcloud for prediction as a binary tfrecord-file. Running my script I got the error ('No JSON object could be decoded', 162)
. What do you think I am doing wrong?
To push a prediction job to gcloud, i use this script:
REGION=us-east1
MODEL_NAME=mymodel
VERSION=v_hopt_22
INPUT_PATH=gs://mydb/test-data.tfr
OUTPUT_PATH=gs://mydb/prediction.tfr
JOB_NAME=pred_${MODEL_NAME}_${VERSION}_b
args=" --model "$MODEL_NAME
args+=" --version "$VERSION
args+=" --data-format=TF_RECORD"
args+=" --input-paths "$INPUT_PATH
args+=" --output-path "$OUTPUT_PATH
args+=" --region "$REGION
gcloud ml-engine jobs submit prediction $JOB_NAME $args
test-data.tfr
has been generated from a numpy array, as so:
import numpy as np
filename = './Datasets/test-data.npz'
data = np.load(filename)
features = data['X'] # features[channel, example, feature]
np_features = np.swapaxes(features, 0, 1) # features[example, channel, feature]
import tensorflow as tf
import nnscoring.data as D
def floats_feature(arr):
return tf.train.Feature(float_list=tf.train.FloatList(value=arr.flatten().tolist()))
writer = tf.python_io.TFRecordWriter("./Datasets/test-data.tfr")
for i, np_example in enumerate(np_features):
if i%1000==0: print(i)
tf_feature = {
ch: floats_feature(x)
for ch, x in zip(D.channels, np_example)
}
tf_features = tf.train.Features(feature=tf_feature)
tf_example = tf.train.Example(features=tf_features)
writer.write(tf_example.SerializeToString())
writer.close()
Update (following yxshi):
I define the following serving function
def tfrecord_serving_input_fn():
import tensorflow as tf
seq_length = int(dt*sr)
examples = tf.placeholder(tf.string, shape=())
feat_map = {
channel: tf.FixedLenSequenceFeature(shape=(seq_length,),
dtype=tf.float32, allow_missing=True)
for channel in channels
}
parsed = tf.parse_single_example(examples, features=feat_map)
features = {
channel: tf.expand_dims(tensor, -1)
for channel, tensor in parsed.iteritems()
}
from collections import namedtuple
InputFnOps = namedtuple("InputFnOps", "features labels receiver_tensors")
tf.contrib.learn.utils.input_fn_utils.InputFnOps = InputFnOps
return InputFnOps(features=features, labels=None, receiver_tensors=examples)
# InputFnOps = tf.contrib.learn.utils.input_fn_utils.InputFnOps
# return InputFnOps(features, None, parsed)
# Error: InputFnOps has no attribute receiver_tensors
.., which I pass to generate_experiment_fn as so:
export_strategies = [
saved_model_export_utils.make_export_strategy(
tfrecord_serving_input_fn,
exports_to_keep = 1,
default_output_alternative_key = None,
)]
gen_exp_fn = generate_experiment_fn(
train_steps_per_iteration = args.train_steps_per_iteration,
train_steps = args.train_steps,
export_strategies = export_strategies
)
(aside: note the dirty patch of InputFnOps)