I tried to solve this problem, but I could not implement.
Could you help me anything for this?
Problem
Mat1 | Mat2 | Mat3
1 2 | 1 3 | 2 6
1 3 | 2 6 | 2 5
2 4 | 3 1 | 3 1
3 1 | 3 5 | 5 2
4 5 |
When there are 3 matrices(for example above), I want to get this result for the intersection rows in [column1 column2 matrixnumber]
form.
The result for above example would be
1 3 1
1 3 2
2 6 2
2 6 3
3 1 1
3 1 2
3 1 3
It would be OK if the result is in the form [column1 column2 firstmatrix secondmatrix, ...]
1 3 1 2
2 6 2 3
3 1 1 2 3
For this problem, I want to use at most one for-loop.
Do you have any idea for this?
Here an alternative solution (which seems to run faster than Gunther's) using MATLAB's intersect
:
Mat = {[1 2; 1 3; 2 4; 3 1; 4 5],
[1 3; 2 6; 3 1; 3 5],
[2 6; 2 5; 3 1; 5 2]};
result = zeros(sum(cellfun(@(x)size(x, 1), Mat)), 3); % # Preallocate memory
k = 1;
for cc = transpose(nchoosek(1:numel(Mat), 2))
x = intersect(Mat{cc}, 'rows'); % # Find intersection
y = ones(size(x, 1), 2) * diag(cc); % # Generate matrix indices
result(k:k + numel(y) - 1, :) = [[x; x], y(:)];
k = k + numel(y);
end
result(all(~result, 2), :) = []; % # Discard zero rows
result = unique(result, 'rows'); % # Discard repeated rows
The matrix result
should now contain the unique intersection rows and their corresponding matrix indices, just like you want:
result =
1 3 1
1 3 2
2 6 2
2 6 3
3 1 1
3 1 2
3 1 3
If I understand correctly, you have a number of sets of pairs: Mat1
,Mat2
, Mat3
, ... MatN
. Now you want to find the unique pairs and then find out in which set every unique pair appears.
If you have a large number of sets, I suggest you start using a cell array to hold them all, makes things a lot easier:
N = 3; % total number of data sets
Mat = cell(N,1);
Mat{1} = [1 2;
1 3;
2 4;
3 1;
4 5];
Mat{2} = [1 3;
2 6;
3 1;
3 5];
Mat{3} = [2 6;
2 5;
3 1;
5 2];
% etc.
First let's find the unique pairs:
uniq_pairs = unique(cat(1,Mat{:}),'rows');
M = size(uniq_pairs ,1);
Then use ismember to check which sets contain which pairs:
matcontpair = false(M,N); %preallocate
for ii=1:N % unavoidable loop
matcontpair(:,ii) = ismember(uniq_pairs,Mat{ii},'rows');
end
To translate this intersection matrix to a set of matrix numbers for each pair, loop through it again and store the final result in a cell array (you can't use an array, because they might not be of same size (some pairs only found once, other twice, other three times ...)
pair_occurence= cell(M,1);
d=1:N;
for jj=1:M
pair_occurence{jj} = d(matcontpair(jj,:));
end
Now you have a matrix uniq_pairs
of size Mx2
containing the unique pairs, and a occurence cell array pair_occurence
of size Mx1
: each cell corresponds to a pair and contains a list of matrices where the pair is present.
If you want to remove pairs from the list which are only present in one matrix, use the following:
% find them
lonely_pairs = cellfun(@numel,pair_occurence)<2;
% and destroy them
uniq_pairs(lonely_pairs,:) = [];
pair_occurence(lonely_pairs) = [];