Add extra column as the cumulative time difference

2019-02-25 11:38发布

问题:

How to add an extra column that is the cumulative value of the time differences for each course? For example, the initial table is:

 id_A       course     weight                ts_A       value
 id1        cotton     3.5       2017-04-27 01:35:30  150.000000
 id1        cotton     3.5       2017-04-27 01:36:00  416.666667
 id1        cotton     3.5       2017-04-27 01:36:30  700.000000
 id1        cotton     3.5       2017-04-27 01:37:00  950.000000
 id2     cotton blue   5.0       2017-04-27 02:35:30  150.000000
 id2     cotton blue   5.0       2017-04-27 02:36:00  450.000000
 id2     cotton blue   5.0       2017-04-27 02:36:30  520.666667
 id2     cotton blue   5.0       2017-04-27 02:37:00  610.000000

The expected result is:

 id_A       course     weight                ts_A       value      cum_delta_sec
 id1        cotton     3.5       2017-04-27 01:35:30  150.000000      0
 id1        cotton     3.5       2017-04-27 01:36:00  416.666667      30 
 id1        cotton     3.5       2017-04-27 01:36:30  700.000000      60
 id1        cotton     3.5       2017-04-27 01:37:00  950.000000      90
 id2     cotton blue   5.0       2017-04-27 02:35:30  150.000000      0
 id2     cotton blue   5.0       2017-04-27 02:36:00  450.000000      30
 id2     cotton blue   5.0       2017-04-27 02:36:30  520.666667      60
 id2     cotton blue   5.0       2017-04-27 02:37:00  610.000000      90

回答1:

You can chain the diff method with cumsum:

# convert ts_A to datetime type
df.ts_A = pd.to_datetime(df.ts_A)

# convert ts_A to seconds, group by id and then use transform to calculate the cumulative difference
df['cum_delta_sec'] = df.ts_A.astype(int).div(10**9).groupby(df.id_A).transform(lambda x: x.diff().fillna(0).cumsum())
df



回答2:

Use groupby, transform, and .iloc:

df['ts_A'] = pd.to_datetime(df.ts_A)
df['cum_delta_sec'] = (df.groupby('id_A')['ts_A']
                         .transform(lambda x: (x - x.iloc[0]).dt.total_seconds()))

Output:

  id_A       course  weight                ts_A       value  cum_delta_sec
0  id1       cotton     3.5 2017-04-27 01:35:30  150.000000              0
1  id1       cotton     3.5 2017-04-27 01:36:00  416.666667             30
2  id1       cotton     3.5 2017-04-27 01:36:30  700.000000             60
3  id1       cotton     3.5 2017-04-27 01:37:00  950.000000             90
4  id2  cotton blue     5.0 2017-04-27 02:35:30  150.000000              0
5  id2  cotton blue     5.0 2017-04-27 02:36:00  450.000000             30
6  id2  cotton blue     5.0 2017-04-27 02:36:30  520.666667             60
7  id2  cotton blue     5.0 2017-04-27 02:37:00  610.000000             90

In the group, subtract current value from the first value and use .dt accessor to convert to seconds.



回答3:

import csv
import datetime as dt

with open('path/to/input') as fin, open('path/to/output', 'w') as fout:
    infile = csv.DictReader(fin, delimiter='\t')
    outfile = csv.DictWriter(fout, delimiter='\t', fieldnames=infile.fieldnames + ['cum_delta_sec'])

    cdt = 0
    last = None
    for row in infile:
        if last is None:
            last = dt.strptime(row['ts_A'], "%Y-%m-%d %H:%M:%S")
            row['cum_delta_sec'] = 0
            outfile.writerow(row)
            continue

        cdt += (last - dt.strptime(row['ts_A'], "%Y-%m-%d %H:%M:%S")).total_seconds()
        row['cum_delta_sec'] = cdt
        outfile.writerow(row)