I'm having trouble figuring out a way to curry a function a specified number of times. That is, I give the function a natural number n and a function fun, and it curries the function n times. For example:
(curry n fun)
Is the function and a possible application would be:
(((((curry 4 +) 1) 2) 3) 4)
Which would produce 10.
I'm really not sure how to implement it properly. Could someone please give me a hand? Thanks :)
You can write your own n-curry
procedure by repeatedly calling curry
:
(define (n-curry n func)
(let loop ([i 1] [acc func])
(if (= i n)
acc
(loop (add1 i) (curry acc)))))
If you're in Racket, it can be expressed a bit simpler using a for/fold
iteration:
(define (n-curry n func)
(for/fold ([acc func])
([i (in-range (sub1 n))])
(curry acc)))
Anyway use it like this:
(((((n-curry 4 +) 1) 2) 3) 4)
=> 10
;;; no curry
;;; (Int, Int, Int) => Int
(define sum
(lambda (x y z)
(+ x y z) ) )
(sum 1 2 3)
;;; curry once
;;; (Int) => ((Int x Int) => Int)
(define sum
(lambda (x)
(lambda (y z)
(+ x y z) ) ) )
(define sum+10 (sum 10))
(sum+10 10 20)
;;; curry 2 times
;;; (Int) => (Int => (Int => Int) )
(define sum
(lambda (x)
(lambda (y)
(lambda (z)
(+ x y z) ) ) ) )
(define sum+10+20 ((sum 10) 20))
(sum+10+20 30)
;;; Now we will generalize, starting from these examples:
(define (curry n f)
(if (= n 0)
(lambda (x) x)
(lambda (x) (f ((curry (- n 1) f) x)))))
;;;Example: apply 11 times the function 1+
on the initial number 10 , results 21:
((curry 11 (lambda (x) (+ x 1))) 10)