I have the following data frame:
dat <- structure(list(`A-XXX` = c(1.51653275922944, 0.077037240321129,
0), `fBM-XXX` = c(2.22875185527511, 0, 0), `P-XXX` = c(1.73356698481106,
0, 0), `vBM-XXX` = c(3.00397859609183, 0, 0)), .Names = c("A-XXX",
"fBM-XXX", "P-XXX", "vBM-XXX"), row.names = c("BATF::JUN_AHR",
"BATF::JUN_CCR9", "BATF::JUN_IL10"), class = "data.frame")
dat
#> A-XXX fBM-XXX P-XXX vBM-XXX
#> BATF::JUN_AHR 1.51653276 2.228752 1.733567 3.003979
#> BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000
#> BATF::JUN_IL10 0.00000000 0.000000 0.000000 0.000000
I can remove the row with all column zero with this command:
> dat <- dat[ rowSums(dat)!=0, ]
> dat
A-XXX fBM-XXX P-XXX vBM-XXX
BATF::JUN_AHR 1.51653276 2.228752 1.733567 3.003979
BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000
But how can I do it with dplyr's pipe style?
Here's a dplyr option:
library(dplyr)
filter_all(dat, any_vars(. != 0))
# A-XXX fBM-XXX P-XXX vBM-XXX
#1 1.51653276 2.228752 1.733567 3.003979
#2 0.07703724 0.000000 0.000000 0.000000
Here we make use of the logic that if any variable is not equal to zero, we will keep it. It's the same as removing rows where all variables are equal to zero.
Regarding row.names:
library(tidyverse)
dat %>% rownames_to_column() %>% filter_at(vars(-rowname), any_vars(. != 0))
# rowname A-XXX fBM-XXX P-XXX vBM-XXX
#1 BATF::JUN_AHR 1.51653276 2.228752 1.733567 3.003979
#2 BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000
We could use reduce
from purrr
to get the sum of rows and filter
the dataset based on the logical vector
library(tidyverse)
dat %>%
reduce(`+`) %>%
{. != 0} %>%
filter(dat, .)
# A-XXX fBM-XXX P-XXX vBM-XXX
#1 1.51653276 2.228752 1.733567 3.003979
#2 0.07703724 0.000000 0.000000 0.000000
NOTE: Within the %>%
, the row.names gets stripped off. It may be better to create a new column or assign row.names later
If we need the row names as well, then create a row names column early and then use that to change the row names at the end
dat %>%
rownames_to_column('rn') %>%
filter(rowSums(.[-1]) != 0) %>%
`row.names<-`(., .[['rn']]) %>% select(-rn)
# A-XXX fBM-XXX P-XXX vBM-XXX
#BATF::JUN_AHR 1.51653276 2.228752 1.733567 3.003979
#BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000
Here is a third option that uses purrr::pmap
to generate the indices of whether or not all rows are zero. Definitely less compact than filter_at
, but opens up options for interesting and complex conditions using pmap
!
dat <- structure(list(`A-XXX` = c(1.51653275922944, 0.077037240321129,
0), `fBM-XXX` = c(2.22875185527511, 0, 0), `P-XXX` = c(1.73356698481106,
0, 0), `vBM-XXX` = c(3.00397859609183, 0, 0)), .Names = c("A-XXX",
"fBM-XXX", "P-XXX", "vBM-XXX"), row.names = c("BATF::JUN_AHR",
"BATF::JUN_CCR9", "BATF::JUN_IL10"), class = "data.frame")
library(tidyverse)
dat %>%
rownames_to_column() %>%
bind_cols(all_zero = pmap_lgl(., function(rowname, ...) all(list(...) == 0))) %>%
filter(all_zero == FALSE) %>%
`rownames<-`(.$rowname) %>%
select(-rowname, -all_zero)
#> A-XXX fBM-XXX P-XXX vBM-XXX
#> BATF::JUN_AHR 1.51653276 2.228752 1.733567 3.003979
#> BATF::JUN_CCR9 0.07703724 0.000000 0.000000 0.000000
Created on 2018-03-14 by the reprex package (v0.2.0).