So, while I am pretty happy to find a lot of answers on Stack Overflow I decided it is time to ask a question myself.
I am trying to use a root finding algorithm with derivatives. In accordance with the GSL I have to define the function and its derivative in advance. But I wonder if this can be done more elegant with a wrapper.
Some time ago I found a very handy template (GSL C++ wrapper) which works fine for one function to e.g. integrate and I make heavy usage of it.
Now I am wondering if this approach can be extended to provide two functions for the GSL, namely the function itself and its derivative.
Edit: Solution
template <typename F, typename G>
class gsl_root_deriv : public gsl_function_fdf
{
private:
const F& _f;
const G& _df;
static double invoke_f(double x, void* params){
return static_cast<gsl_root_deriv*>(params) -> _f(x);
}
static double invoke_df(double x, void* params){
return static_cast<gsl_root_deriv*>(params) -> _df(x);
}
static void invoke_fdf(double x, void* params, double* f, double* df){
(*f) = static_cast<gsl_root_deriv*>(params) -> _f(x);
(*df) = static_cast<gsl_root_deriv*>(params) -> _df(x);
}
public:
gsl_root_deriv(const F& f_init, const G& df_init)
: _f(f_init), _df(df_init)
{
f = &gsl_root_deriv::invoke_f;
df = &gsl_root_deriv::invoke_df;
fdf = &gsl_root_deriv::invoke_fdf;
params = this;
}
};
And a minimal example which resembles the example from the GSL:
#include <iostream>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_roots.h>
#include <memory>
#include "gsl_root_deriv.h"
int main()
{
auto f = [](double x) -> double { return 0.25 * x*x - 1.0; };
auto df = [](double x) -> double { return 0.5 * x; };
gsl_root_deriv<decltype(f),decltype(df)> Fp(f,df);
int status(0), iter(0), max_iter(100);
const gsl_root_fdfsolver_type* T( gsl_root_fdfsolver_newton);
std::unique_ptr<gsl_root_fdfsolver,void(*)(gsl_root_fdfsolver*)>
s(gsl_root_fdfsolver_alloc(T),gsl_root_fdfsolver_free);
double x_0(0.0), x(5.0);
gsl_root_fdfsolver_set( s.get(), &Fp, x );
do
{
iter++;
std::cout << "Iteration " << iter << std::endl;
status = gsl_root_fdfsolver_iterate( s.get() );
x_0 = x;
x = gsl_root_fdfsolver_root( s.get() );
status = gsl_root_test_delta( x, x_0, 0.0, 1.0e-3 );
} while( status == GSL_CONTINUE && iter < max_iter );
std::cout << "Converged to root " << x << std::endl;
return 0;
}
Kind regards,
-- Klaus