In C++, is there a smart way to mirror output from stdout to both the console and the file? I'm hoping there is a way to do it like in this question.
Edit: It would be nice to be able to do this with just the standard libraries (ie: no boost)..
In C++, is there a smart way to mirror output from stdout to both the console and the file? I'm hoping there is a way to do it like in this question.
Edit: It would be nice to be able to do this with just the standard libraries (ie: no boost)..
Alternatively, just start your program so it's piped to the tee command.
You could try a Tee Device provided by Boost.Iostreams.
A Tee device directs output to multiple streams. As far as I know, you can chain them to reach theoretically infinite output devices from one write
call.
This answer shows an example for how to do exactly what you want.
You can do this by creating a class that extends std::streambuf
, and has a std::ofstream
member. After overriding the std::streambuf::overflow
and std::streambuf::sync
member functions, you'll be all set.
Most of the code below comes from here. The stuff I've added ("ADDED:") for file-mirroring is pointed out. This might be overly complex as I'm at work and can't pore over it fully to simplify it, but it works - the bonus of doing it this way (instead of just using a std::streambuf*
is that any code (say you have an external library) that writes to std::cout
will write to your file.
mystreambuf.h
#ifndef MYSTREAMBUF_H
#define MYSTREAMBUF_H
template <typename charT, typename traits = std::char_traits<charT> >
class mystreambuf : public std::basic_streambuf<charT, traits>
{
public:
// The size of the input and output buffers.
static const size_t BUFF_SIZE = 1024;
typedef traits traits_type;
typedef typename traits_type::int_type int_type;
typedef typename traits_type::pos_type pos_type;
typedef typename traits_type::off_type off_type;
// You can use any method that you want, but here, we'll just take in a raw streambuf as a
// slave I/O object. xor_char is what each character is xored with before output.
explicit mystreambuf(std::streambuf* buf)
: out_buf_(new charT[BUFF_SIZE])
{
// ADDED: store the original cout stream and open our output file
this->original_cout = buf;
outfile.open("test.txt");
// Initialize the put pointer. Overflow won't get called until this buffer is filled up,
// so we need to use valid pointers.
this->setp(out_buf_, out_buf_ + BUFF_SIZE - 1);
}
// It's a good idea to release any resources when done using them.
~mystreambuf() {
delete [] out_buf_;
// ADDED: restore cout, close file
std::cout.rdbuf(original_cout);
outfile.flush();
outfile.close();
}
protected:
// This is called when there are too many characters in the buffer (thus, a write needs to be performed).
virtual int_type overflow(int_type c);
// This is called when the buffer needs to be flushed.
virtual int_type sync();
private:
// Output buffer
charT* out_buf_;
// ADDED: tracking the original std::cout stream & the file stream to open
std::streambuf* original_cout;
std::ofstream outfile;
};
#endif
mystreambuf.cpp
// Based on class by perfectly.insane from http://www.dreamincode.net/code/snippet2499.htm
#include <fstream>
#include <iostream>
#include <streambuf>
#include "mystreambuf.h"
// This function is called when the output buffer is filled.
// In this function, the buffer should be written to wherever it should
// be written to (in this case, the streambuf object that this is controlling).
template <typename charT, typename traits>
typename mystreambuf<charT, traits>::int_type
mystreambuf<charT, traits>::overflow(typename mystreambuf<charT, traits>::int_type c)
{
charT* ibegin = this->out_buf_;
charT* iend = this->pptr();
// Reset the put pointers to indicate that the buffer is free
// (at least it will be at the end of this function).
setp(out_buf_, out_buf_ + BUFF_SIZE + 1);
// If this is the end, add an eof character to the buffer.
// This is why the pointers passed to setp are off by 1
// (to reserve room for this).
if(!traits_type::eq_int_type(c, traits_type::eof())) {
*iend++ = traits_type::to_char_type(c);
}
// Compute the write length.
int_type ilen = iend - ibegin;
// ADDED: restore cout to its original stream, output to it, output to the file, then set cout's stream back to this, our streambuf)
std::cout.rdbuf(original_cout);
out_buf_[ilen] = '\0';
std::cout << out_buf_;
outfile << out_buf_;
std::cout.rdbuf(this);
return traits_type::not_eof(c);
}
// This is called to flush the buffer.
// This is called when we're done with the file stream (or when .flush() is called).
template <typename charT, typename traits>
typename mystreambuf<charT, traits>::int_type
mystreambuf<charT, traits>::sync()
{
return traits_type::eq_int_type(this->overflow(traits_type::eof()),
traits_type::eof()) ? -1 : 0;
}
int main(int argc, char* argv[]) {
mystreambuf<char> filter(std::cout.rdbuf());
std::cout.rdbuf( &filter );
std::cout << "Hello World" << std::endl;
return 0;
}
hope this helps; cheers