I read this question, but it still doesn't make a lot of sense to me. It still sounds more like a sugarcoating feature.
What's the difference between:
class A
{
// public/private ?
A (const A&) = delete;
};
and
class A
{
private:
A (const A&); // MISSING implementation
};
Same for operator=
or other functions.
One difference is that =delete
allows for compile-time errors while in some cases the declaration without a definition is only caught at link-time (at which the error message is typically not pointing you to the source of the problem). One such case is when you add a member function that tries to copy an instance of A
. Even when it's not a member function of A
, the error message about the copy-ctor being private
is not as clear as using =delete
.
To avoid confusion, I'd recommend you make the deleted function public
as otherwise you will get additional and misleading error messages.
The difference is that the purpose of the =delete
code is explicit in it's purpose. Declaring functions as private
/ inaccessible was a trick. Although most people knew it, the error it generated was obscure (a linking/access level error instead of a semantical problem in the code - i.e. "you are using a deleted function").
One difference is that the old-fashioned form gives undefined behaviour if the class (or a friend) tries to destroy itself. Within class members and friends, the destructor is accessible, so there is no compile-time error if it's used. Instead, you get a violation of the One Definition Rule. In practice, this will cause a link error, but formally the behaviour is undefined.
Deleting the constructor (or other function) causes a compile error if the function is needed in any circumstances; and states the intent more explicitly, allowing the compiler to give better diagnostic messages. This is especially useful when functions are implicitly deleted due to something else being deleted.