I am trying to solve for the position of a body orbiting a much more massive body, using the idealization that the much more massive body doesn't move. I am trying to solve for the position in cartesian coordinates using 4th order Runge-Kutta in python.
Here is my code:
dt = .1
t = np.arange(0,10,dt)
vx = np.zeros(len(t))
vy = np.zeros(len(t))
x = np.zeros(len(t))
y = np.zeros(len(t))
vx[0] = 10 #initial x velocity
vy[0] = 10 #initial y velocity
x[0] = 10 #initial x position
y[0] = 0 #initial y position
M = 20
def fx(x,y,t): #x acceleration
return -G*M*x/((x**2+y**2)**(3/2))
def fy(x,y,t): #y acceleration
return -G*M*y/((x**2+y**2)**(3/2))
def rkx(x,y,t,dt): #runge-kutta for x
kx1 = dt * fx(x,y,t)
mx1 = dt * x
kx2 = dt * fx(x + .5*kx1, y + .5*kx1, t + .5*dt)
mx2 = dt * (x + kx1/2)
kx3 = dt * fx(x + .5*kx2, y + .5*kx2, t + .5*dt)
mx3 = dt * (x + kx2/2)
kx4 = dt * fx(x + kx3, y + x3, t + dt)
mx4 = dt * (x + kx3)
return (kx1 + 2*kx2 + 2*kx3 + kx4)/6
return (mx1 + 2*mx2 + 2*mx3 + mx4)/6
def rky(x,y,t,dt): #runge-kutta for y
ky1 = dt * fy(x,y,t)
my1 = dt * y
ky2 = dt * fy(x + .5*ky1, y + .5*ky1, t + .5*dt)
my2 = dt * (y + ky1/2)
ky3 = dt * fy(x + .5*ky2, y + .5*ky2, t + .5*dt)
my3 = dt * (y + ky2/2)
ky4 = dt * fy(x + ky3, y + ky3, t + dt)
my4 = dt * (y + ky3)
return (ky1 + 2*ky2 + 2*ky3 + ky4)/6
return (my1 + 2*my2 + 2*my3 + my4)/6
for n in range(1,len(t)): #solve using RK4 functions
vx[n] = vx[n-1] + fx(x[n-1],y[n-1],t[n-1])*dt
vy[n] = vy[n-1] + fy(x[n-1],y[n-1],t[n-1])*dt
x[n] = x[n-1] + vx[n-1]*dt
y[n] = y[n-1] + vy[n-1]*dt
Originally, no matter which way I tweaked the code, I was getting an error on my for loop, either "object of type 'float' has no len()" (I didn't understand what float python could be referring to), or "setting an array element with a sequence" (I also didn't understand what sequence it meant). I've managed to get rid of the errors, but my results are just wrong. I get vx and vy arrays of 10s, an x array of integers from 10. to 109., and a y array of integers from 0. to 99.
I suspect there are issues with fx(x,y,t) and fy(x,y,t) or with the way I have coded the runge-kutta functions to go with fx and fy, because I've used the same runge-kutta code for other functions and it works fine.
I greatly appreciate any help in figuring out why my code isn't working. Thank you.
Physics
The Newton law gives you a second order ODE u''=F(u)
with u=[x,y]
. Using v=[x',y']
you get the first order system
u' = v
v' = F(u)
which is 4-dimensional and has to be solved using a 4 dimensional state. The only reduction available is to use the Kepler laws which allow to reduce the system to a scalar order one ODE for the angle. But that is not the task here.
Euler method
You correctly implemented the Euler method to calculate values in the last loop of your code. That it may look un-physical can be because the Euler method continuously increases the orbit, as it moves to the outside of convex trajectories following the tangent. In your implementation this outward spiral can be seen for G=100
.
This can be reduced in effect by choosing a smaller step size, such as dt=0.001
.
You should select the integration time to be a good part of a full orbit to get a presentable result, with above parameters you get about 2 loops, which is good.
RK4 implementation
You made several errors. Somehow you lost the velocities, the position updates should be based on the velocities.
Then you should have halted at fx(x + .5*kx1, y + .5*kx1, t + .5*dt)
to reconsider your approach as that is inconsistent with any naming convention. The consistent, correct variant is
fx(x + .5*kx1, y + .5*ky1, t + .5*dt)
which shows that you can not decouple the integration of a coupled system, as you need the y
updates alongside the x
updates. Further, the function values are the accelerations, thus update the velocities. The position updates use the velocities of the current state. Thus the step should start as
kx1 = dt * fx(x,y,t) # vx update
mx1 = dt * vx # x update
ky1 = dt * fy(x,y,t) # vy update
my1 = dt * vy # y update
kx2 = dt * fx(x + 0.5*mx1, y + 0.5*my1, t + 0.5*dt)
mx2 = dt * (vx + 0.5*kx1/2)
ky2 = dt * fy(x + 0.5*mx1, y + 0.5*my1, t + 0.5*dt)
my2 = dt * (vy + 0.5*ky1/2)
etc.
However, as you see, this already starts to become unwieldy. Assemble the state into a vector and use a vector valued function for the system equations
M, G = 20, 100
def orbitsys(u):
x,y,vx,vy = u
r = np.hypot(x,y)
f = G*M/r**3
return np.array([vx, vy, -f*x, -f*y]);
Then you can use a cook-book implementation of the Euler or Runge-Kutta step
def Eulerstep(f,u,dt): return u+dt*f(u)
def RK4step(f,u,dt):
k1 = dt*f(u)
k2 = dt*f(u+0.5*k1)
k3 = dt*f(u+0.5*k2)
k4 = dt*f(u+k3)
return u + (k1+2*k2+2*k3+k4)/6
and combine them into an integration loop
def Eulerintegrate(f, y0, tspan):
y = np.zeros([len(tspan),len(y0)])
y[0,:]=y0
for k in range(1, len(tspan)):
y[k,:] = Eulerstep(f, y[k-1], tspan[k]-tspan[k-1])
return y
def RK4integrate(f, y0, tspan):
y = np.zeros([len(tspan),len(y0)])
y[0,:]=y0
for k in range(1, len(tspan)):
y[k,:] = RK4step(f, y[k-1], tspan[k]-tspan[k-1])
return y
and invoke them with your given problem
dt = .1
t = np.arange(0,10,dt)
y0 = np.array([10, 0.0, 10, 10])
sol_euler = Eulerintegrate(orbitsys, y0, t)
x,y,vx,vy = sol_euler.T
plt.plot(x,y)
sol_RK4 = RK4integrate(orbitsys, y0, t)
x,y,vx,vy = sol_RK4.T
plt.plot(x,y)
You are not using rkx
, rky
functions anywhere!
There are two return
at the end of function definition you should use
return [(kx1 + 2*kx2 + 2*kx3 + kx4)/6, (mx1 + 2*mx2 + 2*mx3 + mx4)/6]
(as pointed out by @eapetcho). Also, your implementation of Runge-Kutta is not clear to me.
You have dv/dt
so you solve for v
and then update r
accordingly.
for n in range(1,len(t)): #solve using RK4 functions
vx[n] = vx[n-1] + rkx(vx[n-1],vy[n-1],t[n-1])*dt
vy[n] = vy[n-1] + rky(vx[n-1],vy[n-1],t[n-1])*dt
x[n] = x[n-1] + vx[n-1]*dt
y[n] = y[n-1] + vy[n-1]*dt
Here is my version of the code
import numpy as np
#constants
G=1
M=1
h=0.1
#initiating variables
rt = np.arange(0,10,h)
vx = np.zeros(len(rt))
vy = np.zeros(len(rt))
rx = np.zeros(len(rt))
ry = np.zeros(len(rt))
#initial conditions
vx[0] = 10 #initial x velocity
vy[0] = 10 #initial y velocity
rx[0] = 10 #initial x position
ry[0] = 0 #initial y position
def fx(x,y): #x acceleration
return -G*M*x/((x**2+y**2)**(3/2))
def fy(x,y): #y acceleration
return -G*M*y/((x**2+y**2)**(3/2))
def rk4(xj, yj):
k0 = h*fx(xj, yj)
l0 = h*fx(xj, yj)
k1 = h*fx(xj + 0.5*k0 , yj + 0.5*l0)
l1 = h*fy(xj + 0.5*k0 , yj + 0.5*l0)
k2 = h*fx(xj + 0.5*k1 , yj + 0.5*l1)
l2 = h*fy(xj + 0.5*k1 , yj + 0.5*l1)
k3 = h*fx(xj + k2, yj + l2)
l3 = h*fy(xj + k2, yj + l2)
xj1 = xj + (1/6)*(k0 + 2*k1 + 2*k2 + k3)
yj1 = yj + (1/6)*(l0 + 2*l1 + 2*l2 + l3)
return (xj1, yj1)
for t in range(1,len(rt)):
nv = rk4(vx[t-1],vy[t-1])
[vx[t],vy[t]] = nv
rx[t] = rx[t-1] + vx[t-1]*h
ry[t] = ry[t-1] + vy[t-1]*h
I suspect there are issues with fx(x,y,t) and fy(x,y,t)
This is the case, I just checked my code for fx=3
and fy=y
and I got a nice trajectory.
Here is the ry
vs rx
plot: