I needed a std::unordered_map
with key a std::pair<T*, T*>
so I "stole" the following code:
template <class T>
inline void hash_combine(std::size_t & seed, const T & v)
{
std::hash<T> hasher;
seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
namespace std
{
template<typename S, typename T> struct hash<pair<S, T>>
{
inline size_t operator()(const pair<S, T> & v) const
{
size_t seed = 0;
::hash_combine(seed, v.first);
::hash_combine(seed, v.second);
return seed;
}
};
}
from this stackoverflow answer.
It works like a charm on linux machines with gcc 4.9.2. However in windows visual studio 2012 it crashes upon calling member function find()
of my unordered_map
. A friend of mine debugged the crash on windows machine and he reported that it breaks only in debug compilation mode by giving "vector subscript out of range".
Q:
- Is the code posted valid for hashing a
std::pair<T*, T*>
?
- Is there a more robust/better way of hashing a
std::pair<T*, T*>
?
- What causes this strange behaviour?
P.S: Deeply sorry for not posting a mcve but It's impossible to do so.
Specialization of templates in std
for types also in std
may or may not make your program ill-formed (the standard is ambiguous, it seems to use "user-defined type" in multiple different ways without ever defining it). See my question on the subject, and active working group defect on the issue.
So create your own hashing namespace:
namespace my_hash {
template<class T=void,class=void>
struct hasher:std::hash<T>{};
template<class T, class=std::result_of_t< hasher<T>(T const&) >>
size_t hash( T const& t ) {
return hasher<T>{}(t);
}
template<>
struct hasher<void,void> {
template<class T>
std::result_of_t<hasher<T>(T const&)>
operator()(T const& t)const{
return hasher<T>{}(t);
}
};
// support for containers and tuples:
template <class T>
size_t hash_combine(std::size_t seed, const T & v) {
seed ^= hash(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
template<class Tuple, size_t...Is>
size_t hash_tuple_like(Tuple const& t, size_t count, std::index_sequence<Is...>) {
size_t seed = hash(count);
using discard=int[];
(void)discard{0,((
seed = hash_combine(seed, std::get<Is>(t))
),void(),0)...};
return seed;
}
template<class Tuple>
size_t hash_tuple_like(Tuple const& t) {
constexpr size_t count = std::tuple_size<Tuple>{};
return hash_tuple_like(t, count, std::make_index_sequence<count>{} );
}
struct tuple_hasher {
template<class Tuple>
size_t operator()(Tuple const& t)const{
return hash_tuple_like(t);
}
};
template<class...Ts>
struct hasher<std::tuple<Ts...>,void>:
tuple_hasher
{};
template<class T, size_t N>
struct hasher<std::array<T,N>,void>:
tuple_hasher
{};
template<class...Ts>
struct hasher<std::pair<Ts...>,void>:
tuple_hasher
{};
template<class C>
size_t hash_container( C const& c ) {
size_t seed = hash(c.size());
for( const auto& x:c ) {
seed = hash_combine( seed, x );
}
return seed;
}
struct container_hasher {
template<class C>
size_t operator()(C const& c)const{ return hash_container(c); }
};
template<class...Ts>
struct hasher< std::vector<Ts...>, void >:
container_hasher
{};
// etc
};
now you pass my_hash::hasher<>
as your hasher to a container, and you don't have to do the sketchy business of providing a std
specialization for a type (mostly) in std
.
my_hash::hasher<?,void>
exists so you can do SFINAE testing (say, detect if a type is container-like, and forward to hash_container
. my_hash::hash
provides ADL overriding for types without having to fool around in the my_hash
namespace.
As an example:
template<class T>
struct custom {
std::vector<T> state;
friend size_t hash( custom const& c ) {
using my_hash::hash;
return hash(state);
}
};
and custom
is now hashable. No messy specialization required.