I am trying to implement my own RSA encryption engine. Given these RSA algorithm values:
p = 61. // A prime number.
q = 53. // Also a prime number.
n = 3233. // p * q.
totient = 3120. // (p - 1) * (q - 1)
e = 991. // Co-prime to the totient (co-prime to 3120).
d = 1231. // d * e = 1219921, which is equal to the relation where 1 + k * totient = 1219921 when k = 391.
I am trying to write a method to encrypt each byte in a string and return back an encrypted string:
public string Encrypt(string m, Encoding encoding)
{
byte[] bytes = encoding.GetBytes(m);
for (int i = 0; i < bytes.Length; i++)
{
bytes[i] = (byte)BigInteger.ModPow(bytes[i], e, n);
}
string encryptedString = encoding.GetString(bytes);
Console.WriteLine("Encrypted {0} as {1}.", m, encryptedString);
return encryptedString;
}
The obvious issue here is that BigInteger.ModPow(bytes[i], e, n)
may be too large to fit into a byte-space; it could result in values over 8 bits in size. How do you get around this issue while still being able to decrypt an encrypted string of bytes back into a regular string?
Update: Even encrypting from byte[] to byte[], you reach a case where encrypting that byte using the RSA algorithm goes beyond the size limit of a byte:
public byte[] Encrypt(string m, Encoding encoding)
{
byte[] bytes = encoding.GetBytes(m);
for (int i = 0; i < bytes.Length; i++)
{
bytes[i] = (byte)BigInteger.ModPow(bytes[i], e, n);
}
return bytes;
}
Update: My issue is that encryption would cause a greater number of bytes than the initial input string had:
public byte[] Encrypt(string m, Encoding encoding)
{
byte[] bytes = encoding.GetBytes(m);
byte[] returnBytes = new byte[0];
for (int i = 0; i < bytes.Length; i++)
{
byte[] result = BigInteger.ModPow(bytes[i], (BigInteger)e, n).ToByteArray();
int preSize = returnBytes.Length;
Array.Resize(ref returnBytes, returnBytes.Length + result.Length);
result.CopyTo(returnBytes, preSize);
}
return returnBytes;
}
public string Decrypt(byte[] c, Encoding encoding)
{
byte[] returnBytes = new byte[0];
for (int i = 0; i < c.Length; i++)
{
byte[] result = BigInteger.ModPow(c[i], d, n).ToByteArray();
int preSize = returnBytes.Length;
Array.Resize(ref returnBytes, returnBytes.Length + result.Length);
result.CopyTo(returnBytes, preSize);
}
string decryptedString = encoding.GetString(returnBytes);
return decryptedString;
}
If you ran this code like this:
byte[] encryptedBytes = engine.Encrypt("Hello, world.", Encoding.UTF8);
Console.WriteLine(engine.Decrypt(encryptedBytes, Encoding.UTF8));
The output would be this:
?♥D
?♥→☻►♦→☻►♦oD♦8? ?♠oj?♠→☻►♦;♂?♠♂♠?♠
Obviously, the output is not the original string because I can't just try decrypting each byte at a time, since sometimes two or more bytes of the cypher-text represent the value of one integer that I need to decrypt back to one byte of the original string...so I want to know what the standard mechanism for handling this is.
Your basic code for encrypting and decrypting each byte - the call to ModPow
- is working, but you're going about the "splitting the message up and encrypting each piece" inappropriately.
To show that the ModPow
part - i.e. the maths - is fine, here's code based on yours, which encrypts a string
to a BigInteger[]
and back:
using System;
using System.Linq;
using System.Numerics;
using System.Text;
class Test
{
const int p = 61;
const int q = 53;
const int n = 3233;
const int totient = 3120;
const int e = 991;
const int d = 1231;
static void Main()
{
var encrypted = Encrypt("Hello, world.", Encoding.UTF8);
var decrypted = Decrypt(encrypted, Encoding.UTF8);
Console.WriteLine(decrypted);
}
static BigInteger[] Encrypt(string text, Encoding encoding)
{
byte[] bytes = encoding.GetBytes(text);
return bytes.Select(b => BigInteger.ModPow(b, (BigInteger)e, n))
.ToArray();
}
static string Decrypt(BigInteger[] encrypted, Encoding encoding)
{
byte[] bytes = encrypted.Select(bi => (byte) BigInteger.ModPow(bi, d, n))
.ToArray();
return encoding.GetString(bytes);
}
}
Next you need to read more about how a byte[]
is encrypted into another byte[]
using RSA, including all the different padding schemes etc. There's a lot more to it than just calling ModPow
on each byte.
But to reiterate, you should not be doing this to end up with a production RSA implementation. The chances of you doing that without any security flaws are very slim indeed. It's fine to do this for academic interest, to learn more about the principles of cryptography, but leave the real implementations to experts. (I'm far from an expert in this field - there's no way I'd start implementing my own encryption...)
Note: I updated this answer. Please scroll down to the update for how it should actually be implemented because this first way of doing it is not the correct way of doing RSA encryption.
One way I can think to do it is like this (but may not be compliant to standards), and also, note this does not pad:
public byte[] Encrypt(string m, Encoding encoding)
{
byte[] bytes = encoding.GetBytes(m);
byte[] returnBytes = new byte[0];
for (int i = 0; i < bytes.Length; i++)
{
byte[] result = BigInteger.ModPow(bytes[i], (BigInteger)e, n).ToByteArray();
int preSize = returnBytes.Length;
Array.Resize(ref returnBytes, returnBytes.Length + result.Length + 1);
(new byte[] { (byte)(result.Length) }).CopyTo(returnBytes, preSize);
result.CopyTo(returnBytes, preSize + 1);
}
return returnBytes;
}
public string Decrypt(byte[] c, Encoding encoding)
{
byte[] returnBytes = new byte[0];
for (int i = 0; i < c.Length; i++)
{
int dataLength = (int)c[i];
byte[] result = new byte[dataLength];
for (int j = 0; j < dataLength; j++)
{
i++;
result[j] = c[i];
}
BigInteger integer = new BigInteger(result);
byte[] integerResult = BigInteger.ModPow(integer, d, n).ToByteArray();
int preSize = returnBytes.Length;
Array.Resize(ref returnBytes, returnBytes.Length + integerResult.Length);
integerResult.CopyTo(returnBytes, preSize);
}
string decryptedString = encoding.GetString(returnBytes);
return decryptedString;
}
This has the potential of being cross-platform because you have the option of using a different datatype to represent e or n and pass it to a C# back-end service like that. Here is a test:
string stringToEncrypt = "Mary had a little lamb.";
Console.WriteLine("Encrypting the string: {0}", stringToEncrypt);
byte[] encryptedBytes = engine.Encrypt(stringToEncrypt, Encoding.UTF8);
Console.WriteLine("Encrypted text: {0}", Encoding.UTF8.GetString(encryptedBytes));
Console.WriteLine("Decrypted text: {0}", engine.Decrypt(encryptedBytes, Encoding.UTF8));
Output:
Encrypting the string: Mary had a little lamb.
Encrypted text: ☻6☻1♦☻j☻☻&♀☻g♦☻t☻☻1♦☻? ☻g♦☻1♦☻g♦☻?♥☻?☻☻7☺☻7☺☻?♥☻?♂☻g♦☻?♥☻1♦☻$☺☻
c ☻?☻
Decrypted text: Mary had a little lamb.
Update: Everything I said earlier is completely wrong in the implementation of RSA. Wrong, wrong, wrong! This is the correct way to do RSA encryption:
- Convert your string to a BigInteger datatype.
- Make sure your integer is smaller than the value of n that you've calculated for your algorithm, otherwise you won't be able to decypher it.
- Encrypt the integer. RSA works on integer encryption only. This is clear.
- Decrypt it from the encrypted integer.
- I can't help but wonder that the BigInteger class was mostly created for cryptography.
As an example:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;
using System.Security.Cryptography;
using System.Text;
using System.Threading.Tasks;
namespace BytePadder
{
class Program
{
const int p = 61;
const int q = 53;
const int n = 3233;
const int totient = 3120;
const int e = 991;
const int d = 1231;
static void Main(string[] args)
{
// ---------------------- RSA Example I ----------------------
// Shows how an integer gets encrypted and decrypted.
BigInteger integer = 1000;
BigInteger encryptedInteger = Encrypt(integer);
Console.WriteLine("Encrypted Integer: {0}", encryptedInteger);
BigInteger decryptedInteger = Decrypt(encryptedInteger);
Console.WriteLine("Decrypted Integer: {0}", decryptedInteger);
// --------------------- RSA Example II ----------------------
// Shows how a string gets encrypted and decrypted.
string unencryptedString = "A";
BigInteger integer2 = new BigInteger(Encoding.UTF8.GetBytes(unencryptedString));
Console.WriteLine("String as Integer: {0}", integer2);
BigInteger encryptedInteger2 = Encrypt(integer2);
Console.WriteLine("String as Encrypted Integer: {0}", encryptedInteger2);
BigInteger decryptedInteger2 = Decrypt(encryptedInteger2);
Console.WriteLine("String as Decrypted Integer: {0}", decryptedInteger2);
string decryptedIntegerAsString = Encoding.UTF8.GetString(decryptedInteger2.ToByteArray());
Console.WriteLine("Decrypted Integer as String: {0}", decryptedIntegerAsString);
Console.ReadLine();
}
static BigInteger Encrypt(BigInteger integer)
{
if (integer < n)
{
return BigInteger.ModPow(integer, e, n);
}
throw new Exception("The integer must be less than the value of n in order to be decypherable!");
}
static BigInteger Decrypt(BigInteger integer)
{
return BigInteger.ModPow(integer, d, n);
}
}
}
Example output:
Encrypted Integer: 1989
Decrypted Integer: 1000
String as Integer: 65
String as Encrypted Integer: 1834
String as Decrypted Integer: 65
Decrypted Integer as String: A
If you are looking to use RSA encryption in C# then you should not be attempting to build your own. For starters the prime numbers you have chosen are probably to small. P and Q are supposed to be large prime numbers.
You should check out some other question/answers:
how to use RSA to encrypt files (huge data) in C#
RSA Encryption of large data in C#
And other references:
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.encrypt(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/system.security.cryptography.rsacryptoserviceprovider.aspx