可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I have a vector of sets and I want to remove all sets that are subsets of other sets in the vector. Example:
a = {0, 3, 5}
b = {0, 5}
c = {0, 2, 3}
In this case I would like to remove b
, because it's a subset of a
. I'm fine with using a "dumb" n² algorithm.
Sadly, it's pretty tricky to get it working with the borrow checker. The best I've come up with is (Playground):
let mut v: Vec<HashSet<u8>> = vec![];
let mut to_delete = Vec::new();
for (i, set_a) in v.iter().enumerate().rev() {
for set_b in &v[..i] {
if set_a.is_subset(&set_b) {
to_delete.push(i);
break;
}
}
}
for i in to_delete {
v.swap_remove(i);
}
(note: the code above is not correct! See comments for further details)
I see a few disadvantages:
- I need an additional vector with additional allocations
- Maybe there are more efficient ways than calling
swap_remove
often
- If I need to preserve order, I can't use
swap_remove
, but have to use remove
which is slow
Is there a better way to do this? I'm not just asking about my use case, but about the general case as it's described in the title.
回答1:
Here is a solution that does not make additional allocations and preserves the order:
fn product_retain<T, F>(v: &mut Vec<T>, mut pred: F)
where F: FnMut(&T, &T) -> bool
{
let mut j = 0;
for i in 0..v.len() {
// invariants:
// items v[0..j] will be kept
// items v[j..i] will be removed
if (0..j).chain(i + 1..v.len()).all(|a| pred(&v[i], &v[a])) {
v.swap(i, j);
j += 1;
}
}
v.truncate(j);
}
fn main() {
// test with a simpler example
// unique elements
let mut v = vec![1, 2, 3];
product_retain(&mut v, |a, b| a != b);
assert_eq!(vec![1, 2, 3], v);
let mut v = vec![1, 3, 2, 4, 5, 1, 2, 4];
product_retain(&mut v, |a, b| a != b);
assert_eq!(vec![3, 5, 1, 2, 4], v);
}
This is a kind of partition algorithm. The elements in the first partition will be kept and in the second partition will be removed.
回答2:
- I need an additional vector with additional allocations
I wouldn't worry about that allocation, since the memory and runtime footprint of that allocation will be really small compared to the rest of your algorithm.
- Maybe there are more efficient ways than calling
swap_remove
often.
- If I need to preserve order, I can't use
swap_remove,
but have to use remove
which is slow
I'd change to_delete
from Vec<usize>
to Vec<bool>
and just mark whether a particular hashmap should be removed. You can then use the Vec::retain
, which conditionaly removes elements while preserving order. Unfortunately, this function doesn't pass the index to the closure, so we have to create a workaround (playground):
let mut to_delete = vec![false; v.len()];
for (i, set_a) in v.iter().enumerate().rev() {
for set_b in &v[..i] {
if set_a.is_subset(&set_b) {
to_delete[i] = true;
}
}
}
{
// This assumes that retain checks the elements in the order.
let mut i = 0;
v.retain(|_| {
let ret = !to_delete[i];
i += 1;
ret
});
}
If your hashmap has a special value which can never occur under normal conditions, you can use it to mark a hashmap as "to delete", and then check that condition in retain
(it would require changing the outer loop from iterator-based to range-based though).
Sidenote (if that HashSet<u8>
is not just a toy example): More eficient way to store and compare sets of small integers would be to use a bitset.
回答3:
You can use a while
loop instead of the for
:
use std::collections::HashSet;
fn main() {
let arr: &[&[u8]] = &[
&[3],
&[1,2,3],
&[1,3],
&[1,4],
&[2,3]
];
let mut v:Vec<HashSet<u8>> = arr.iter()
.map(|x| x.iter().cloned().collect())
.collect();
let mut pos = 0;
while pos < v.len() {
let is_sub = v[pos+1..].iter().any(|x| v[pos].is_subset(x))
|| v[..pos].iter().any(|x| v[pos].is_subset(x));
if is_sub {
v.swap_remove(pos);
} else {
pos+=1;
}
}
println!("{:?}", v);
}
There are no additional allocations.
To avoid using remove
and swap_remove
, you can change the type of vector to Vec<Option<HashSet<u8>>>
:
use std::collections::HashSet;
fn main() {
let arr: &[&[u8]] = &[
&[3],
&[1,2,3],
&[1,3],
&[1,4],
&[2,3]
];
let mut v:Vec<Option<HashSet<u8>>> = arr.iter()
.map(|x| Some(x.iter().cloned().collect()))
.collect();
for pos in 0..v.len(){
let is_sub = match v[pos].as_ref() {
Some(chk) =>
v[..pos].iter().flat_map(|x| x).any(|x| chk.is_subset(x))
|| v[pos+1..].iter().flat_map(|x| x).any(|x| chk.is_subset(x)),
None => false,
};
if is_sub { v[pos]=None };//Replace with None instead remove
}
println!("{:?}", v);//[None, Some({3, 2, 1}), None, Some({1, 4}), None]
}