The following function does not use row pivoting for LU decomposition. Is there an existing function in R that does LU decomposition with row pivot?
> require(Matrix)
> expand(lu(matrix(rnorm(16),4,4)))
$L
4 x 4 Matrix of class "dtrMatrix"
[,1] [,2] [,3] [,4]
[1,] 1.00000000 . . .
[2,] 0.13812836 1.00000000 . .
[3,] 0.27704442 0.39877260 1.00000000 .
[4,] -0.08512341 -0.24699820 0.04347201 1.00000000
$U
4 x 4 Matrix of class "dtrMatrix"
[,1] [,2] [,3] [,4]
[1,] 1.5759031 -0.2074224 -1.5334082 -0.5959756
[2,] . -1.3096874 -0.6301727 1.1953838
[3,] . . 1.6316292 0.6256619
[4,] . . . 0.8078140
$P
4 x 4 sparse Matrix of class "pMatrix"
[1,] | . . .
[2,] . | . .
[3,] . . . |
[4,] . . | .
The lu
function in R is using partial (row) pivoting. You did not give the original matrix with your example, so I will create a new example to demonstrate.
Function lu
in R is computing A = PLU, which is equivalent to computing the LU decomposition of matrix A with its rows permuted by the permutation matrix P-1: P-1A = LU. See the Matrix
package documentation for more information.
Example
> A <- matrix(c(1, 1, 1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, 1, -1), 4)
> A
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 -1 -1
[3,] 1 -1 -1 1
[4,] 1 -1 1 -1
Here's the L
factor:
> luDec <- lu(A)
> L <- expand(luDec)$L
> L
4 x 4 Matrix of class "dtrMatrix" (unitriangular)
[,1] [,2] [,3] [,4]
[1,] 1 . . .
[2,] 1 1 . .
[3,] 1 0 1 .
[4,] 1 1 -1 1
Here's the U
factor:
> U <- expand(luDec)$U
> U
4 x 4 Matrix of class "dtrMatrix"
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] . -2 -2 0
[3,] . . -2 -2
[4,] . . . -4
Here's the permutation matrix:
> P <- expand(luDec)$P
> P
4 x 4 sparse Matrix of class "pMatrix"
[1,] | . . .
[2,] . . | .
[3,] . | . .
[4,] . . . |
We can see that LU
is a row-permuted version of A
:
> L %*% U
4 x 4 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 -1 -1 1
[3,] 1 1 -1 -1
[4,] 1 -1 1 -1
Going back to the original identity A = PLU we can recover A
(compare with A
above):
> P %*% L %*% U
4 x 4 Matrix of class "dgeMatrix"
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 1 1 -1 -1
[3,] 1 -1 -1 1
[4,] 1 -1 1 -1
Perhaps this does the job. However, there is not a windows binary and I can't try it.