I need to know all memory address space used by a process. The memory space will later be scanned to locate values within the process and identify their locations / addresses. My current process for this is to take each module's base address through its (base address + memory size).
I'm testing this on a process with a known value at a known address. When I look up that specific address, I get the value I expect. However, when I scan (what I believe to be) all address space used by the process, I can't find the value anywhere.
I know that a numeric value "4143000" exists at 0x0CF8DC38 and 0x0CF8DDDC. When I call ReadMemoryBytes(module, module.BaseAddress, 4, (IntPtr)(0x0CF8DC38)) I get back bytes (152, 55, 63, 0). When I call BitConverter.GetBytes(4143000) I get back the same set of bytes. When I use a different memory scanner on that process, I find that value at those addresses.
However, when I scan the "known addresses", I don't find this value anywhere. It doesn't look like my code is even finding those addresses in use by the process.
Thusly, my question is twofold:
- How can I find these addresses within this process?
- I'm concerned I may be dealing with absolute addresses in system memory versus relative addresses within a process. Am I doing this right?
.
// (in the calling method)
foreach (ProcessModule module in process.Modules) {
ParameterizedThreadStart pst = new ParameterizedThreadStart(p => SearchModule(module, value));
Thread t = new Thread(pst);
t.Start(); }
private unsafe void SearchModule(ProcessModule module, string value)
{
Process process = getProcess;
int iVal;
double dVal;
int.TryParse(value, out iVal);
double.TryParse(value, out dVal);
for (Int64 addr = (Int64)module.BaseAddress; addr + value.Length < (Int64)module.BaseAddress + module.ModuleMemorySize; addr++)
{
// Compare ints
if (iVal > 0)
{
byte[] ExpectedBytes = BitConverter.GetBytes(iVal);
byte[] ActualBytes = ReadMemoryBytes(module, (IntPtr)addr, (uint)ExpectedBytes.Length, (IntPtr)addr);
bool isMatch = true;
for (int i = 0; i < ExpectedBytes.Length; i++)
if (ExpectedBytes[i] != ActualBytes[i])
isMatch = false;
if (isMatch)
PossibleAddresses.Add((IntPtr)addr);
}
}
private byte[] ReadMemoryBytes(ProcessModule mod, IntPtr memAddress, uint size, IntPtr BaseAddress)
{
byte[] buffer = new byte[size];
IntPtr bytesRead;
unsafe
{
ReadProcessMemory(processPointer, BaseAddress, buffer, size, out bytesRead);
return buffer;
}
}
[DllImport("kernel32.dll")]
public static extern IntPtr OpenProcess(UInt32 dwDesiredAccess, Int32 bInheritHandle, UInt32 dwProcessId);
[DllImport("kernel32.dll")]
public static extern Int32 CloseHandle(IntPtr hObject);
[DllImport("kernel32.dll")]
public static extern Int32 ReadProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress, [In, Out] byte[] buffer, UInt32 size, out IntPtr lpNumberOfBytesRead);