I know that variables in F# are immutable by default.
But, for example in F# interactive:
> let x = 4;;
val x : int = 4
> let x = 5;;
val x : int = 5
> x;;
val it : int = 5
>
So, I assign 4 to x, then 5 to x and it's changing. Is it correct? Should it give some error or warning? Or I just don't understand how it works?
When you write let x = 3
, you are binding the identifier x
to the value 3
. If you do that a second time in the same scope, you are declaring a new identifier that hides the previous one since it has the same name.
Mutating a value in F# is done via the destructive update operator, <-
. This will fail for immutable values, i.e.:
> let x = 3;;
val x : int = 3
> x <- 5;;
x <- 5;;
^^^^^^
stdin(2,1): error FS0027: This value is not mutable
To declare a mutable variable, add mutable
after let
:
let mutable x = 5;;
val mutable x : int = 5
> x <- 6;;
val it : unit = ()
> x;;
val it : int = 6
But what's the difference between the two, you might ask? An example may be enough:
let i = 0;
while i < 10 do
let i = i + 1
()
Despite the appearances, this is an infinite loop. The i
declared inside the loop is a different i
that hides the outer one. The outer one is immutable, so it always keeps its value 0
and the loop never ends. The correct way to write this is with a mutable variable:
let mutable i = 0;
while i < 10 do
i <- i + 1
()
x
is not changed, it's just hidden by next declaration.
For example:
> let x = 4;;
val x : int = 4
> let x = "abc";;
val x : string = "abc"
>
You're not assigning 5 to x
, you are defining a new variable.
The following example shows that there are two distinct variables.
(It also shows that you can "access" the old x if it is in a closure, used by another function):
let x = 5;;
let f y = y+x;;
f 10;;
let x = 0;;
f 10;;
yields
>
val x : int = 5
>
val f : int -> int
> val it : int = 15
>
val x : int = 0
> val it : int = 15
as you see, both calls to f use the first variable x
. The definition let x = 0;;
defines a new variable x
, but does not redefines f
.
Here's a minimal example illustrating identifier "shadowing" (i.e. hiding) in F#:
let x = 0
do //introduce a new lexical scope
let x = 1 //"shadow" (i.e. hide) the previous definition of x
printfn "%i" x //prints 1
//return to outer lexical scope
printfn "%i" x //prints 0, proving that our outer definition of x was not mutated by our inner definition of x
Your example is actually a bit more complex, because you are working in the F# Interactive (FSI). FSI dynamically emits code that looks something like the following in your example:
module FSI_0001 =
let x = 4;;
open FSI_0001 //x = 4 is now available in the top level scope
module FSI_0002 =
let x = 5;;
open FSI_0002 //x = 5 is now available in the top level scope, hiding x = 4
module FSI_0003 =
let it = x;;
open FSI_0003
//... subsequent interactions