Here is my DF1
OrganizationId|^|AnnualPeriodId|^|InterimPeriodId|^|InterimNumber|^|FFAction
4295858898|^|204|^|205|^|1|^|I|!|
4295858898|^|204|^|208|^|2|^|I|!|
4295858898|^|204|^|209|^|2|^|I|!|
4295858898|^|204|^|211|^|3|^|I|!|
4295858898|^|204|^|212|^|3|^|I|!|
4295858898|^|204|^|214|^|4|^|I|!|
4295858898|^|204|^|215|^|4|^|I|!|
4295858898|^|206|^|207|^|1|^|I|!|
4295858898|^|206|^|210|^|2|^|I|!|
4295858898|^|206|^|213|^|3|^|I|!|
Here is my DF2
DataPartition|^|PartitionYear|^|TimeStamp|^|OrganizationId|^|AnnualPeriodId|^|InterimPeriodId|^|InterimNumber|^|FFAction|!|
SelfSourcedPublic|^|2002|^|1511224917595|^|4295858941|^|24|^|25|^|4|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917596|^|4295858941|^|24|^|25|^|4|^|O|!|
SelfSourcedPublic|^|2003|^|1511224917597|^|4295858941|^|30|^|31|^|2|^|O|!|
SelfSourcedPublic|^|2003|^|1511224917598|^|4295858941|^|30|^|31|^|2|^|O|!|
SelfSourcedPublic|^|2003|^|1511224917599|^|4295858941|^|30|^|32|^|1|^|O|!|
SelfSourcedPublic|^|2003|^|1511224917600|^|4295858941|^|30|^|32|^|1|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917601|^|4295858941|^|24|^|33|^|3|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917602|^|4295858941|^|24|^|33|^|3|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917603|^|4295858941|^|24|^|34|^|2|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917604|^|4295858941|^|24|^|34|^|2|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917605|^|4295858941|^|1|^|2|^|4|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917606|^|4295858941|^|1|^|3|^|4|^|O|!|
SelfSourcedPublic|^|2001|^|1511224917607|^|4295858941|^|5|^|6|^|4|^|O|!|
SelfSourcedPublic|^|2001|^|1511224917608|^|4295858941|^|5|^|7|^|4|^|O|!|
SelfSourcedPublic|^|2003|^|1511224917609|^|4295858941|^|12|^|10|^|2|^|O|!|
SelfSourcedPublic|^|2003|^|1511224917610|^|4295858941|^|12|^|11|^|2|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917611|^|4295858941|^|1|^|13|^|1|^|O|!|
SelfSourcedPublic|^|2003|^|1511224917612|^|4295858941|^|12|^|14|^|1|^|O|!|
SelfSourcedPublic|^|2001|^|1511224917613|^|4295858941|^|5|^|15|^|3|^|O|!|
SelfSourcedPublic|^|2001|^|1511224917614|^|4295858941|^|5|^|16|^|3|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917615|^|4295858941|^|1|^|17|^|3|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917616|^|4295858941|^|1|^|18|^|3|^|O|!|
SelfSourcedPublic|^|2001|^|1511224917617|^|4295858941|^|5|^|19|^|1|^|O|!|
SelfSourcedPublic|^|2001|^|1511224917618|^|4295858941|^|5|^|20|^|2|^|O|!|
SelfSourcedPublic|^|2001|^|1511224917619|^|4295858941|^|5|^|21|^|2|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917620|^|4295858941|^|1|^|22|^|2|^|O|!|
SelfSourcedPublic|^|2002|^|1511224917621|^|4295858941|^|1|^|23|^|2|^|O|!|
SelfSourcedPublic|^|2016|^|1511224917622|^|4295858941|^|35|^|36|^|1|^|I|!|
SelfSourcedPublic|^|2016|^|1511224917642|^|4295858941|^|null|^|35|^|null|^|D|!|
SelfSourcedPublic|^|2016|^|1511224917643|^|4295858941|^|null|^|36|^|null|^|D|!|
SelfSourcedPublic|^|2016|^|1511224917644|^|4295858941|^|null|^|37|^|null|^|D|!|
I want to implement join based on the value of the column.
This is what I am trying to achieve in Spark-Scala for example but don't know how to implement it
If the FFAction_1 =I
in the DF2 then below condition
(join and partitionBy on three columns "OrganizationId", "AnnualPeriodId","InterimPeriodId"
)
val windowSpec = Window.partitionBy("OrganizationId", "AnnualPeriodId","InterimPeriodId").orderBy($"TimeStamp".cast(LongType).desc)
val latestForEachKey = df2result.withColumn("rank", rank().over(windowSpec)).filter($"rank" === 1).drop("rank", "TimeStamp")
val dfMainOutput = df1resultFinalWithYear.join(latestForEachKey, Seq("OrganizationId","AnnualPeriodId","InterimPeriodId"), "outer")
.select($"OrganizationId", $"AnnualPeriodId",$"InterimPeriodId",
when($"FFAction_1".isNotNull, concat(col("FFAction_1"),
lit("|!|"))).otherwise(concat(col("FFAction"), lit("|!|"))).as("FFAction"))
.filter(!$"FFAction".contains("D"))
If the FFAction_1 =O or D
then below condition
(join and partitionBy on two columns "OrganizationId","InterimPeriodId"
)
val windowSpec = Window.partitionBy("OrganizationId","InterimPeriodId").orderBy($"TimeStamp".cast(LongType).desc)
val latestForEachKey = df2result.withColumn("rank", rank().over(windowSpec)).filter($"rank" === 1).drop("rank", "TimeStamp")
val dfMainOutput = df1resultFinalWithYear.join(latestForEachKey, Seq("OrganizationId","AnnualPeriodId","InterimPeriodId"), "outer")
.select($"OrganizationId", $"AnnualPeriodId",$"InterimPeriodId",
when($"FFAction_1".isNotNull, concat(col("FFAction_1"),
lit("|!|"))).otherwise(concat(col("FFAction"), lit("|!|"))).as("FFAction"))
.filter(!$"FFAction".contains("D"))
Below is my full code
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
import org.apache.spark.{ SparkConf, SparkContext }
import java.sql.{Date, Timestamp}
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.functions.input_file_name
import org.apache.spark.sql.functions.regexp_extract
val get_cus_val = spark.udf.register("get_cus_val", (filePath: String) => filePath.split("\\.")(3))
val get_cus_YearPartition = spark.udf.register("get_cus_YearPartition", (filePath: String) => filePath.split("\\.")(4))
val rdd = sc.textFile("s3://trfsmallfffile/Interim2Annual/MAIN")
val header = rdd.filter(_.contains("OrganizationId")).map(line => line.split("\\|\\^\\|")).first()
val schema = StructType(header.map(cols => StructField(cols.replace(".", "_"), StringType)).toSeq)
val data = sqlContext.createDataFrame(rdd.filter(!_.contains("OrganizationId")).map(line => Row.fromSeq(line.split("\\|\\^\\|").toSeq)), schema)
val schemaHeader = StructType(header.map(cols => StructField(cols.replace(".", "."), StringType)).toSeq)
val dataHeader = sqlContext.createDataFrame(rdd.filter(!_.contains("OrganizationId")).map(line => Row.fromSeq(line.split("\\|\\^\\|").toSeq)), schemaHeader)
val df1resultFinal=data.withColumn("DataPartition", get_cus_val(input_file_name))
val df1resultFinalWithYear=df1resultFinal.withColumn("PartitionYear", get_cus_YearPartition(input_file_name))
//Loading Incremental
val rdd1 = sc.textFile("s3://trfsmallfffile/Interim2Annual/INCR")
val header1 = rdd1.filter(_.contains("OrganizationId")).map(line => line.split("\\|\\^\\|")).first()
val schema1 = StructType(header1.map(cols => StructField(cols.replace(".", "_"), StringType)).toSeq)
val data1 = sqlContext.createDataFrame(rdd1.filter(!_.contains("OrganizationId")).map(line => Row.fromSeq(line.split("\\|\\^\\|").toSeq)), schema1)
//------------------------------- filtering only the latest from increamental ------------------------------
import org.apache.spark.sql.expressions._
val windowSpec = Window.partitionBy("OrganizationId","AnnualPeriodId","InterimPeriodId").orderBy($"TimeStamp".cast(LongType).desc)
val latestForEachKey1 = data1.withColumn("rank", rank().over(windowSpec)).filter($"rank" === 1).drop("rank")
val windowSpec2 = Window.partitionBy("OrganizationId","InterimPeriodId").orderBy($"TimeStamp".cast(LongType).desc)
val latestForEachKey = latestForEachKey1.withColumn("tobefiltered", first("FFAction|!|").over(windowSpec2))
.filter($"tobefiltered" === "I|!|" || $"tobefiltered" === "O|!|" || ($"tobefiltered" === "D|!|" && $"FFAction|!|" === "D|!|"))
.drop("tobefiltered", "TimeStamp")
//-----------------separating the increamental df for insert, deletion and overwrite----------------
//---------------insert rows are selected -------------------------------
//insert a row if I is detected and if O is found then first delete and then insert
val insertdf = latestForEachKey.filter($"FFAction|!|" === "I|!|" || $"FFAction|!|" === "O|!|").select(df1resultFinalWithYear.schema.fieldNames.map(col):_*)
//------------------deleted rows with primary key "OrganizationId", "InterimPeriodId"------------------
// delete rows from parent if both D or O is found in increamental
val deletedf = latestForEachKey.filter($"FFAction|!|" === "D|!|" || $"FFAction|!|" === "O|!|").select($"OrganizationId", $"InterimPeriodId", lit("delete").as("Delete"))
//join by two primary keys for deletion and delete from the parent dataframe
val dfMainOutput = df1resultFinalWithYear.join(deletedf, Seq("OrganizationId", "InterimPeriodId"), "left").filter($"Delete".isNull).drop("Delete")
val dfToSave=dfMainOutput.union(insertdf).withColumn("FFAction|!|", when($"FFAction|!|" === "O|!|" || $"FFAction|!|" === "I|!|", lit("I|!|")))
val dfMainOutputFinal = dfToSave.na.fill("").select($"DataPartition", $"PartitionYear",concat_ws("|^|", dfMainOutput.schema.fieldNames.filter(_ != "DataPartition").filter(_ != "PartitionYear").map(c => col(c)): _*).as("concatenated"))
val headerColumn = dataHeader.columns.toSeq
val header = headerColumn.mkString("", "|^|", "|!|").dropRight(3)
val dfMainOutputFinalWithoutNull = dfMainOutputFinal.withColumn("concatenated", regexp_replace(col("concatenated"), "null", "")).withColumnRenamed("concatenated", header)
dfMainOutputFinalWithoutNull.repartition(1).write.partitionBy("DataPartition","PartitionYear")
.format("csv")
.option("nullValue", "")
.option("delimiter", "\t")
.option("quote", "\u0000")
.option("header", "true")
.option("codec", "gzip")
.save("s3://trfsmallfffile/Interim2Annual/output")
val FFRowCount =dfMainOutputFinalWithoutNull.groupBy("DataPartition","PartitionYear").count
FFRowCount.coalesce(1).write.format("com.databricks.spark.xml")
.option("rootTag", "FFFileType")
.option("rowTag", "FFPhysicalFile")
.save("s3://trfsmallfffile/Interim2Annual/Descr")