I am loading a file of JSON objects as a PySpark SchemaRDD
. I want to change the "shape" of the objects (basically, I'm flattening them) and then insert into a Hive table.
The problem I have is that the following returns a PipelinedRDD
not a SchemaRDD
:
log_json.map(flatten_function)
(Where log_json
is a SchemaRDD
).
Is there either a way to preserve type, cast back to the desired type, or efficiently insert from the new type?
More an idea than a real solution. Let's assume your data looks like this:
data = [
{"foobar":
{"foo": 1, "bar": 2, "fozbaz": {
"foz": 0, "baz": {"b": -1, "a": -1, "z": -1}
}}}]
import json
with open("foobar.json", "w") as fw:
for record in data:
fw.write(json.dumps(record))
First lets load it and check schema:
>>> srdd = sqlContext.jsonFile("foobar.json")
>>> srdd.printSchema()
root
|-- foobar: struct (nullable = true)
| |-- bar: integer (nullable = true)
| |-- foo: integer (nullable = true)
| |-- fozbaz: struct (nullable = true)
| | |-- baz: struct (nullable = true)
| | | |-- a: integer (nullable = true)
| | | |-- b: integer (nullable = true)
| | | |-- z: integer (nullable = true)
| | |-- foz: integer (nullable = true)
Now we register table as suggested by Justin Pihony and extract schema:
srdd.registerTempTable("srdd")
schema = srdd.schema().jsonValue()
Instead of flattening data we can flatten schema using something similar to this:
def flatten_schema(schema):
"""Take schema as returned from schema().jsonValue()
and return list of field names with full path"""
def _flatten(schema, path="", accum=None):
# Extract name of the current element
name = schema.get("name")
# If there is a name extend path
if name is not None:
path = "{0}.{1}".format(path, name) if path else name
# It is some kind of struct
if isinstance(schema.get("fields"), list):
for field in schema.get("fields"):
_flatten(field, path, accum)
elif isinstance(schema.get("type"), dict):
_flatten(schema.get("type"), path, accum)
# It is an atomic type
else:
accum.append(path)
accum = []
_flatten(schema, "", accum)
return accum
add small helper to format query string:
def build_query(schema, df):
select = ", ".join(
"{0} AS {1}".format(field, field.replace(".", "_"))
for field in flatten_schema(schema))
return "SELECT {0} FROM {1}".format(select, df)
and finally results:
>>> sqlContext.sql(build_query(schema, "srdd")).printSchema()
root
|-- foobar_bar: integer (nullable = true)
|-- foobar_foo: integer (nullable = true)
|-- foobar_fozbaz_baz_a: integer (nullable = true)
|-- foobar_fozbaz_baz_b: integer (nullable = true)
|-- foobar_fozbaz_baz_z: integer (nullable = true)
|-- foobar_fozbaz_foz: integer (nullable = true)
Disclaimer: I didn't try to get very deep into schema structure so most likely there are some cases not covered by flatten_schema
.
It looks like select
is not available in python, so you will have to registerTempTable
and write it as a SQL statement, like
`SELECT flatten(*) FROM TABLE`
after setting up the function for use in SQL
sqlCtx.registerFunction("flatten", lambda x: flatten_function(x))
As @zero323 brought up, a function against * is probably not supported...so you can just create a function that takes in your data types and pass all of that in.
The solution is applySchema
:
mapped = log_json.map(flatten_function)
hive_context.applySchema(mapped, flat_schema).insertInto(name)
Where flat_schema is a StructType
representing the schema in the same way as you would obtain from log_json.schema()
(but flattened, obviously).
you can try this one... a bit long but works
def flat_table(df,table_name):
def rec(l,in_array,name):
for i,v in enumerate(l):
if isinstance(v['type'],dict):
if 'fields' in v['type'].keys():
rec(name=name+[v['name']],l=v['type']['fields'],in_array=False)
if 'elementType' in v['type'].keys():
rec(name=name+[v['name']],l=v['type']['elementType']['fields'],in_array=True)
else:#recursia stop rule
#if this is an array so we need to explode every element in the array
if in_array:
field_list.append('{node}{subnode}.array'.format(node=".".join(name)+'.' if name else '', subnode=v['name']))
else:
field_list.append('{node}{subnode}'.format(node=".".join(name)+'.' if name else '', subnode=v['name']))
# table_name='x'
field_list=[]
l=df.schema.jsonValue()['fields']
df.registerTempTable(table_name)
rec(l,in_array=False,name=[table_name])
#create the select satement
inner_fileds=[]
outer_fields=[]
flag=True
for x in field_list:
f=x.split('.')
if f[-1]<>'array':
inner_fileds.append('{field} as {name}'.format(field=".".join(f),name=f[-1]))
of=['a']+f[-1:]
outer_fields.append('{field} as {name}'.format(field=".".join(of),name=of[-1]))
else:
if flag:#add the array to the inner query for expotion only once for every array field
inner_fileds.append('explode({field}) as {name}'.format(field=".".join(f[:-2]),name=f[-3]))
flag=False
of=['a']+f[-3:-1]
outer_fields.append('{field} as {name}'.format(field=".".join(of),name=of[-1]))
q="""select {outer_fields}
from (select {inner_fileds}
from {table_name}) a""".format(outer_fields=',\n'.join(outer_fields),inner_fileds=',\n'.join(inner_fileds),table_name=table_name)
return q