I'm facing the following issue. I'm trying to parallelize a function that updates a file, but I cannot start the Pool()
because of an OSError: [Errno 12] Cannot allocate memory
. I've started looking around on the server, and it's not like I'm using an old, weak one/out of actual memory.
See htop
:
Also, free -m
shows I have plenty of RAM available in addition to the ~7GB of swap memory:
And the files I'm trying to work with aren't that big either. I'll paste my code (and the stack trace) below, there, the sizes are as follows:
The predictionmatrix
dataframe used takes up ca. 80MB according to pandasdataframe.memory_usage()
The file geo.geojson
is 2MB
How do I go about debugging this? What can I check and how? Thank you for any tips/tricks!
Code:
def parallelUpdateJSON(paramMatch, predictionmatrix, data):
for feature in data['features']:
currentfeature = predictionmatrix[(predictionmatrix['SId']==feature['properties']['cellId']) & paramMatch]
if (len(currentfeature) > 0):
feature['properties'].update({"style": {"opacity": currentfeature.AllActivity.item()}})
else:
feature['properties'].update({"style": {"opacity": 0}})
def writeGeoJSON(weekdaytopredict, hourtopredict, predictionmatrix):
with open('geo.geojson') as f:
data = json.load(f)
paramMatch = (predictionmatrix['Hour']==hourtopredict) & (predictionmatrix['Weekday']==weekdaytopredict)
pool = Pool()
func = partial(parallelUpdateJSON, paramMatch, predictionmatrix)
pool.map(func, data)
pool.close()
pool.join()
with open('output.geojson', 'w') as outfile:
json.dump(data, outfile)
Stack Trace:
---------------------------------------------------------------------------
OSError Traceback (most recent call last)
<ipython-input-428-d6121ed2750b> in <module>()
----> 1 writeGeoJSON(6, 15, baseline)
<ipython-input-427-973b7a5a8acc> in writeGeoJSON(weekdaytopredict, hourtopredict, predictionmatrix)
14 print("Start loop")
15 paramMatch = (predictionmatrix['Hour']==hourtopredict) & (predictionmatrix['Weekday']==weekdaytopredict)
---> 16 pool = Pool(2)
17 func = partial(parallelUpdateJSON, paramMatch, predictionmatrix)
18 print(predictionmatrix.memory_usage())
/usr/lib/python3.5/multiprocessing/context.py in Pool(self, processes, initializer, initargs, maxtasksperchild)
116 from .pool import Pool
117 return Pool(processes, initializer, initargs, maxtasksperchild,
--> 118 context=self.get_context())
119
120 def RawValue(self, typecode_or_type, *args):
/usr/lib/python3.5/multiprocessing/pool.py in __init__(self, processes, initializer, initargs, maxtasksperchild, context)
166 self._processes = processes
167 self._pool = []
--> 168 self._repopulate_pool()
169
170 self._worker_handler = threading.Thread(
/usr/lib/python3.5/multiprocessing/pool.py in _repopulate_pool(self)
231 w.name = w.name.replace('Process', 'PoolWorker')
232 w.daemon = True
--> 233 w.start()
234 util.debug('added worker')
235
/usr/lib/python3.5/multiprocessing/process.py in start(self)
103 'daemonic processes are not allowed to have children'
104 _cleanup()
--> 105 self._popen = self._Popen(self)
106 self._sentinel = self._popen.sentinel
107 _children.add(self)
/usr/lib/python3.5/multiprocessing/context.py in _Popen(process_obj)
265 def _Popen(process_obj):
266 from .popen_fork import Popen
--> 267 return Popen(process_obj)
268
269 class SpawnProcess(process.BaseProcess):
/usr/lib/python3.5/multiprocessing/popen_fork.py in __init__(self, process_obj)
18 sys.stderr.flush()
19 self.returncode = None
---> 20 self._launch(process_obj)
21
22 def duplicate_for_child(self, fd):
/usr/lib/python3.5/multiprocessing/popen_fork.py in _launch(self, process_obj)
65 code = 1
66 parent_r, child_w = os.pipe()
---> 67 self.pid = os.fork()
68 if self.pid == 0:
69 try:
OSError: [Errno 12] Cannot allocate memory
UPDATE
According to @robyschek's solution, I've updated my code to:
global g_predictionmatrix
def worker_init(predictionmatrix):
global g_predictionmatrix
g_predictionmatrix = predictionmatrix
def parallelUpdateJSON(paramMatch, data_item):
for feature in data_item['features']:
currentfeature = predictionmatrix[(predictionmatrix['SId']==feature['properties']['cellId']) & paramMatch]
if (len(currentfeature) > 0):
feature['properties'].update({"style": {"opacity": currentfeature.AllActivity.item()}})
else:
feature['properties'].update({"style": {"opacity": 0}})
def use_the_pool(data, paramMatch, predictionmatrix):
pool = Pool(initializer=worker_init, initargs=(predictionmatrix,))
func = partial(parallelUpdateJSON, paramMatch)
pool.map(func, data)
pool.close()
pool.join()
def writeGeoJSON(weekdaytopredict, hourtopredict, predictionmatrix):
with open('geo.geojson') as f:
data = json.load(f)
paramMatch = (predictionmatrix['Hour']==hourtopredict) & (predictionmatrix['Weekday']==weekdaytopredict)
use_the_pool(data, paramMatch, predictionmatrix)
with open('trentino-grid.geojson', 'w') as outfile:
json.dump(data, outfile)
And I still get the same error. Also, according to the documentation, map()
should divide my data
into chunks, so I don't think it should replicate my 80MBs rownum times. I may be wrong though... :)
Plus I've noticed that if I use smaller input (~11MB instead of 80MB) I don't get the error. So I guess I'm trying to use too much memory, but I can't imagine how it goes from 80MB to something 16GBs of RAM can't handle.