how to draw smooth curve through N points using ja

2019-01-01 01:33发布

问题:

For a drawing application I\'m saving the mouse movement coordinates to an array then drawing them with lineTo. The resulting line is not smooth. How can I produce a single curve between all the gathered points?

I\'ve googled but I have only found 3 functions for drawing lines: For 2 sample points, simply use lineTo. For 3 sample points quadraticCurveTo, for 4 sample points, bezierCurveTo.

(I tried drawing a bezierCurveTo for every 4 points in the array, but this leads to kinks every 4 sample points, instead of a continuous smooth curve.)

How do I write a function to draw a smooth curve with 5 sample points and beyond?

回答1:

The problem with joining subsequent sample points together with disjoint \"curveTo\" type functions, is that where the curves meet is not smooth. This is because the two curves share an end point but are influenced by completely disjoint control points. One solution is to \"curve to\" the midpoints between the next 2 subsequent sample points. Joining the curves using these new interpolated points gives a smooth transition at the end points (what is an end point for one iteration becomes a control point for the next iteration.) In other words the two disjointed curves have much more in common now.

This solution was extracted out of the book \"Foundation ActionScript 3.0 Animation: Making things move\". p.95 - rendering techniques: creating multiple curves.

Note: this solution does not actually draw through each of the points, which was the title of my question (rather it approximates the curve through the sample points but never goes through the sample points), but for my purposes (a drawing application), it\'s good enough for me and visually you can\'t tell the difference. There is a solution to go through all the sample points, but it is much more complicated (see http://www.cartogrammar.com/blog/actionscript-curves-update/)

Here is the the drawing code for the approximation method:

// move to the first point
   ctx.moveTo(points[0].x, points[0].y);


   for (i = 1; i < points.length - 2; i ++)
   {
      var xc = (points[i].x + points[i + 1].x) / 2;
      var yc = (points[i].y + points[i + 1].y) / 2;
      ctx.quadraticCurveTo(points[i].x, points[i].y, xc, yc);
   }
 // curve through the last two points
 ctx.quadraticCurveTo(points[i].x, points[i].y, points[i+1].x,points[i+1].y);


回答2:

A bit late, but for the record.

You can achieve smooth lines by using cardinal splines (aka canonical spline) to draw smooth curves that goes through the points.

I made this function for canvas - it\'s split into three function to increase versatility. The main wrapper function looks like this:

function drawCurve(ctx, ptsa, tension, isClosed, numOfSegments, showPoints) {

    showPoints  = showPoints ? showPoints : false;

    ctx.beginPath();

    drawLines(ctx, getCurvePoints(ptsa, tension, isClosed, numOfSegments));

    if (showPoints) {
        ctx.stroke();
        ctx.beginPath();
        for(var i=0;i<ptsa.length-1;i+=2) 
                ctx.rect(ptsa[i] - 2, ptsa[i+1] - 2, 4, 4);
    }
}

To draw a curve have an array with x, y points in the order: x1,y1, x2,y2, ...xn,yn.

Use it like this:

var myPoints = [10,10, 40,30, 100,10]; //minimum two points
var tension = 1;

drawCurve(ctx, myPoints); //default tension=0.5
drawCurve(ctx, myPoints, tension);

The function above calls two sub-functions, one to calculate the smoothed points. This returns an array with new points - this is the core function which calculates the smoothed points:

function getCurvePoints(pts, tension, isClosed, numOfSegments) {

    // use input value if provided, or use a default value   
    tension = (typeof tension != \'undefined\') ? tension : 0.5;
    isClosed = isClosed ? isClosed : false;
    numOfSegments = numOfSegments ? numOfSegments : 16;

    var _pts = [], res = [],    // clone array
        x, y,           // our x,y coords
        t1x, t2x, t1y, t2y, // tension vectors
        c1, c2, c3, c4,     // cardinal points
        st, t, i;       // steps based on num. of segments

    // clone array so we don\'t change the original
    //
    _pts = pts.slice(0);

    // The algorithm require a previous and next point to the actual point array.
    // Check if we will draw closed or open curve.
    // If closed, copy end points to beginning and first points to end
    // If open, duplicate first points to befinning, end points to end
    if (isClosed) {
        _pts.unshift(pts[pts.length - 1]);
        _pts.unshift(pts[pts.length - 2]);
        _pts.unshift(pts[pts.length - 1]);
        _pts.unshift(pts[pts.length - 2]);
        _pts.push(pts[0]);
        _pts.push(pts[1]);
    }
    else {
        _pts.unshift(pts[1]);   //copy 1. point and insert at beginning
        _pts.unshift(pts[0]);
        _pts.push(pts[pts.length - 2]); //copy last point and append
        _pts.push(pts[pts.length - 1]);
    }

    // ok, lets start..

    // 1. loop goes through point array
    // 2. loop goes through each segment between the 2 pts + 1e point before and after
    for (i=2; i < (_pts.length - 4); i+=2) {
        for (t=0; t <= numOfSegments; t++) {

            // calc tension vectors
            t1x = (_pts[i+2] - _pts[i-2]) * tension;
            t2x = (_pts[i+4] - _pts[i]) * tension;

            t1y = (_pts[i+3] - _pts[i-1]) * tension;
            t2y = (_pts[i+5] - _pts[i+1]) * tension;

            // calc step
            st = t / numOfSegments;

            // calc cardinals
            c1 =   2 * Math.pow(st, 3)  - 3 * Math.pow(st, 2) + 1; 
            c2 = -(2 * Math.pow(st, 3)) + 3 * Math.pow(st, 2); 
            c3 =       Math.pow(st, 3)  - 2 * Math.pow(st, 2) + st; 
            c4 =       Math.pow(st, 3)  -     Math.pow(st, 2);

            // calc x and y cords with common control vectors
            x = c1 * _pts[i]    + c2 * _pts[i+2] + c3 * t1x + c4 * t2x;
            y = c1 * _pts[i+1]  + c2 * _pts[i+3] + c3 * t1y + c4 * t2y;

            //store points in array
            res.push(x);
            res.push(y);

        }
    }

    return res;
}

And to actually draw the points as a smoothed curve (or any other segmented lines as long as you have an x,y array):

function drawLines(ctx, pts) {
    ctx.moveTo(pts[0], pts[1]);
    for(i=2;i<pts.length-1;i+=2) ctx.lineTo(pts[i], pts[i+1]);
}

var ctx = document.getElementById(\"c\").getContext(\"2d\");


function drawCurve(ctx, ptsa, tension, isClosed, numOfSegments, showPoints) {

  ctx.beginPath();

  drawLines(ctx, getCurvePoints(ptsa, tension, isClosed, numOfSegments));
  
  if (showPoints) {
    ctx.beginPath();
    for(var i=0;i<ptsa.length-1;i+=2) 
      ctx.rect(ptsa[i] - 2, ptsa[i+1] - 2, 4, 4);
  }

  ctx.stroke();
}


var myPoints = [10,10, 40,30, 100,10, 200, 100, 200, 50, 250, 120]; //minimum two points
var tension = 1;

drawCurve(ctx, myPoints); //default tension=0.5
drawCurve(ctx, myPoints, tension);


function getCurvePoints(pts, tension, isClosed, numOfSegments) {

  // use input value if provided, or use a default value	 
  tension = (typeof tension != \'undefined\') ? tension : 0.5;
  isClosed = isClosed ? isClosed : false;
  numOfSegments = numOfSegments ? numOfSegments : 16;

  var _pts = [], res = [],	// clone array
      x, y,			// our x,y coords
      t1x, t2x, t1y, t2y,	// tension vectors
      c1, c2, c3, c4,		// cardinal points
      st, t, i;		// steps based on num. of segments

  // clone array so we don\'t change the original
  //
  _pts = pts.slice(0);

  // The algorithm require a previous and next point to the actual point array.
  // Check if we will draw closed or open curve.
  // If closed, copy end points to beginning and first points to end
  // If open, duplicate first points to befinning, end points to end
  if (isClosed) {
    _pts.unshift(pts[pts.length - 1]);
    _pts.unshift(pts[pts.length - 2]);
    _pts.unshift(pts[pts.length - 1]);
    _pts.unshift(pts[pts.length - 2]);
    _pts.push(pts[0]);
    _pts.push(pts[1]);
  }
  else {
    _pts.unshift(pts[1]);	//copy 1. point and insert at beginning
    _pts.unshift(pts[0]);
    _pts.push(pts[pts.length - 2]);	//copy last point and append
    _pts.push(pts[pts.length - 1]);
  }

  // ok, lets start..

  // 1. loop goes through point array
  // 2. loop goes through each segment between the 2 pts + 1e point before and after
  for (i=2; i < (_pts.length - 4); i+=2) {
    for (t=0; t <= numOfSegments; t++) {

      // calc tension vectors
      t1x = (_pts[i+2] - _pts[i-2]) * tension;
      t2x = (_pts[i+4] - _pts[i]) * tension;

      t1y = (_pts[i+3] - _pts[i-1]) * tension;
      t2y = (_pts[i+5] - _pts[i+1]) * tension;

      // calc step
      st = t / numOfSegments;

      // calc cardinals
      c1 =   2 * Math.pow(st, 3) 	- 3 * Math.pow(st, 2) + 1; 
      c2 = -(2 * Math.pow(st, 3)) + 3 * Math.pow(st, 2); 
      c3 = 	   Math.pow(st, 3)	- 2 * Math.pow(st, 2) + st; 
      c4 = 	   Math.pow(st, 3)	- 	  Math.pow(st, 2);

      // calc x and y cords with common control vectors
      x = c1 * _pts[i]	+ c2 * _pts[i+2] + c3 * t1x + c4 * t2x;
      y = c1 * _pts[i+1]	+ c2 * _pts[i+3] + c3 * t1y + c4 * t2y;

      //store points in array
      res.push(x);
      res.push(y);

    }
  }

  return res;
}

function drawLines(ctx, pts) {
  ctx.moveTo(pts[0], pts[1]);
  for(i=2;i<pts.length-1;i+=2) ctx.lineTo(pts[i], pts[i+1]);
}
canvas { border: 1px solid red; }
<canvas id=\"c\"><canvas>

This results in this:

\"Example

You can easily extend the canvas so you can call it like this instead:

ctx.drawCurve(myPoints);

Add the following to the javascript:

if (CanvasRenderingContext2D != \'undefined\') {
    CanvasRenderingContext2D.prototype.drawCurve = 
        function(pts, tension, isClosed, numOfSegments, showPoints) {
       drawCurve(this, pts, tension, isClosed, numOfSegments, showPoints)}
}

You can find a more optimized version of this on NPM (npm i cardinal-spline-js) or on GitLab.



回答3:

The first answer will not pass through all the points. This graph will exactly pass through all the points and will be a prefect curve with the points as points as [{x:,y:}] n such points.

var points = [{x:1,y:1},{x:2,y:3},{x:3,y:4},{x:4,y:2},{x:5,y:6}] //took 5 example points
ctx.moveTo((points[0].x), points[0].y);

for(var i = 0; i < points.length-1; i ++)
{

  var x_mid = (points[i].x + points[i+1].x) / 2;
  var y_mid = (points[i].y + points[i+1].y) / 2;
  var cp_x1 = (x_mid + points[i].x) / 2;
  var cp_x2 = (x_mid + points[i+1].x) / 2;
  ctx.quadraticCurveTo(cp_x1,points[i].y ,x_mid, y_mid);
  ctx.quadraticCurveTo(cp_x2,points[i+1].y ,points[i+1].x,points[i+1].y);
}


回答4:

As Daniel Howard points out, Rob Spencer describes what you want at http://scaledinnovation.com/analytics/splines/aboutSplines.html.

Here\'s an interactive demo: http://jsbin.com/ApitIxo/2/

Here it is as a snippet in case jsbin is down.

<!DOCTYPE html>
    <html>
      <head>
        <meta charset=utf-8 />
        <title>Demo smooth connection</title>
      </head>
      <body>
        <div id=\"display\">
          Click to build a smooth path. 
          (See Rob Spencer\'s <a href=\"http://scaledinnovation.com/analytics/splines/aboutSplines.html\">article</a>)
          <br><label><input type=\"checkbox\" id=\"showPoints\" checked> Show points</label>
          <br><label><input type=\"checkbox\" id=\"showControlLines\" checked> Show control lines</label>
          <br>
          <label>
            <input type=\"range\" id=\"tension\" min=\"-1\" max=\"2\" step=\".1\" value=\".5\" > Tension <span id=\"tensionvalue\">(0.5)</span>
          </label>
        <div id=\"mouse\"></div>
        </div>
        <canvas id=\"canvas\"></canvas>
        <style>
          html { position: relative; height: 100%; width: 100%; }
          body { position: absolute; left: 0; right: 0; top: 0; bottom: 0; } 
          canvas { outline: 1px solid red; }
          #display { position: fixed; margin: 8px; background: white; z-index: 1; }
        </style>
        <script>
          function update() {
            $(\"tensionvalue\").innerHTML=\"(\"+$(\"tension\").value+\")\";
            drawSplines();
          }
          $(\"showPoints\").onchange = $(\"showControlLines\").onchange = $(\"tension\").onchange = update;
      
          // utility function
          function $(id){ return document.getElementById(id); }
          var canvas=$(\"canvas\"), ctx=canvas.getContext(\"2d\");

          function setCanvasSize() {
            canvas.width = parseInt(window.getComputedStyle(document.body).width);
            canvas.height = parseInt(window.getComputedStyle(document.body).height);
          }
          window.onload = window.onresize = setCanvasSize();
      
          function mousePositionOnCanvas(e) {
            var el=e.target, c=el;
            var scaleX = c.width/c.offsetWidth || 1;
            var scaleY = c.height/c.offsetHeight || 1;
          
            if (!isNaN(e.offsetX)) 
              return { x:e.offsetX*scaleX, y:e.offsetY*scaleY };
          
            var x=e.pageX, y=e.pageY;
            do {
              x -= el.offsetLeft;
              y -= el.offsetTop;
              el = el.offsetParent;
            } while (el);
            return { x: x*scaleX, y: y*scaleY };
          }
      
          canvas.onclick = function(e){
            var p = mousePositionOnCanvas(e);
            addSplinePoint(p.x, p.y);
          };
      
          function drawPoint(x,y,color){
            ctx.save();
            ctx.fillStyle=color;
            ctx.beginPath();
            ctx.arc(x,y,3,0,2*Math.PI);
            ctx.fill()
            ctx.restore();
          }
          canvas.onmousemove = function(e) {
            var p = mousePositionOnCanvas(e);
            $(\"mouse\").innerHTML = p.x+\",\"+p.y;
          };
      
          var pts=[]; // a list of x and ys

          // given an array of x,y\'s, return distance between any two,
          // note that i and j are indexes to the points, not directly into the array.
          function dista(arr, i, j) {
            return Math.sqrt(Math.pow(arr[2*i]-arr[2*j], 2) + Math.pow(arr[2*i+1]-arr[2*j+1], 2));
          }

          // return vector from i to j where i and j are indexes pointing into an array of points.
          function va(arr, i, j){
            return [arr[2*j]-arr[2*i], arr[2*j+1]-arr[2*i+1]]
          }
      
          function ctlpts(x1,y1,x2,y2,x3,y3) {
            var t = $(\"tension\").value;
            var v = va(arguments, 0, 2);
            var d01 = dista(arguments, 0, 1);
            var d12 = dista(arguments, 1, 2);
            var d012 = d01 + d12;
            return [x2 - v[0] * t * d01 / d012, y2 - v[1] * t * d01 / d012,
                    x2 + v[0] * t * d12 / d012, y2 + v[1] * t * d12 / d012 ];
          }

          function addSplinePoint(x, y){
            pts.push(x); pts.push(y);
            drawSplines();
          }
          function drawSplines() {
            clear();
            cps = []; // There will be two control points for each \"middle\" point, 1 ... len-2e
            for (var i = 0; i < pts.length - 2; i += 1) {
              cps = cps.concat(ctlpts(pts[2*i], pts[2*i+1], 
                                      pts[2*i+2], pts[2*i+3], 
                                      pts[2*i+4], pts[2*i+5]));
            }
            if ($(\"showControlLines\").checked) drawControlPoints(cps);
            if ($(\"showPoints\").checked) drawPoints(pts);
    
            drawCurvedPath(cps, pts);
 
          }
          function drawControlPoints(cps) {
            for (var i = 0; i < cps.length; i += 4) {
              showPt(cps[i], cps[i+1], \"pink\");
              showPt(cps[i+2], cps[i+3], \"pink\");
              drawLine(cps[i], cps[i+1], cps[i+2], cps[i+3], \"pink\");
            } 
          }
      
          function drawPoints(pts) {
            for (var i = 0; i < pts.length; i += 2) {
              showPt(pts[i], pts[i+1], \"black\");
            } 
          }
      
          function drawCurvedPath(cps, pts){
            var len = pts.length / 2; // number of points
            if (len < 2) return;
            if (len == 2) {
              ctx.beginPath();
              ctx.moveTo(pts[0], pts[1]);
              ctx.lineTo(pts[2], pts[3]);
              ctx.stroke();
            }
            else {
              ctx.beginPath();
              ctx.moveTo(pts[0], pts[1]);
              // from point 0 to point 1 is a quadratic
              ctx.quadraticCurveTo(cps[0], cps[1], pts[2], pts[3]);
              // for all middle points, connect with bezier
              for (var i = 2; i < len-1; i += 1) {
                // console.log(\"to\", pts[2*i], pts[2*i+1]);
                ctx.bezierCurveTo(
                  cps[(2*(i-1)-1)*2], cps[(2*(i-1)-1)*2+1],
                  cps[(2*(i-1))*2], cps[(2*(i-1))*2+1],
                  pts[i*2], pts[i*2+1]);
              }
              ctx.quadraticCurveTo(
                cps[(2*(i-1)-1)*2], cps[(2*(i-1)-1)*2+1],
                pts[i*2], pts[i*2+1]);
              ctx.stroke();
            }
          }
          function clear() {
            ctx.save();
            // use alpha to fade out
            ctx.fillStyle = \"rgba(255,255,255,.7)\"; // clear screen
            ctx.fillRect(0,0,canvas.width,canvas.height);
            ctx.restore();
          }
      
          function showPt(x,y,fillStyle) {
            ctx.save();
            ctx.beginPath();
            if (fillStyle) {
              ctx.fillStyle = fillStyle;
            }
            ctx.arc(x, y, 5, 0, 2*Math.PI);
            ctx.fill();
            ctx.restore();
          }

          function drawLine(x1, y1, x2, y2, strokeStyle){
            ctx.beginPath();
            ctx.moveTo(x1, y1);
            ctx.lineTo(x2, y2);
            if (strokeStyle) {
              ctx.save();
              ctx.strokeStyle = strokeStyle;
              ctx.stroke();
              ctx.restore();
            }
            else {
              ctx.save();
              ctx.strokeStyle = \"pink\";
              ctx.stroke();
              ctx.restore();
            }
          }

        </script>


      </body>
    </html>



回答5:

Give KineticJS a try - you can define a Spline with an array of points. Here\'s an example:

Old url: http://www.html5canvastutorials.com/kineticjs/html5-canvas-kineticjs-spline-tutorial/

See archive url: https://web.archive.org/web/20141204030628/http://www.html5canvastutorials.com/kineticjs/html5-canvas-kineticjs-spline-tutorial/



回答6:

I decide to add on, rather than posting my solution to another post. Below are the solution that I build, may not be perfect, but so far the output are good.

Important: it will pass through all the points!

If you have any idea, to make it better, please share to me. Thanks.

Here are the comparison of before after:

\"enter

Save this code to HTML to test it out.

<!DOCTYPE html>
<html>
<body>
    <canvas id=\"myCanvas\" width=\"1200\" height=\"700\" style=\"border:1px solid #d3d3d3;\">Your browser does not support the HTML5 canvas tag.</canvas>
    <script>
        var cv = document.getElementById(\"myCanvas\");
        var ctx = cv.getContext(\"2d\");

        function gradient(a, b) {
            return (b.y-a.y)/(b.x-a.x);
        }

        function bzCurve(points, f, t) {
            //f = 0, will be straight line
            //t suppose to be 1, but changing the value can control the smoothness too
            if (typeof(f) == \'undefined\') f = 0.3;
            if (typeof(t) == \'undefined\') t = 0.6;

            ctx.beginPath();
            ctx.moveTo(points[0].x, points[0].y);

            var m = 0;
            var dx1 = 0;
            var dy1 = 0;

            var preP = points[0];
            for (var i = 1; i < points.length; i++) {
                var curP = points[i];
                nexP = points[i + 1];
                if (nexP) {
                    m = gradient(preP, nexP);
                    dx2 = (nexP.x - curP.x) * -f;
                    dy2 = dx2 * m * t;
                } else {
                    dx2 = 0;
                    dy2 = 0;
                }
                ctx.bezierCurveTo(preP.x - dx1, preP.y - dy1, curP.x + dx2, curP.y + dy2, curP.x, curP.y);
                dx1 = dx2;
                dy1 = dy2;
                preP = curP;
            }
            ctx.stroke();
        }

        // Generate random data
        var lines = [];
        var X = 10;
        var t = 40; //to control width of X
        for (var i = 0; i < 100; i++ ) {
            Y = Math.floor((Math.random() * 300) + 50);
            p = { x: X, y: Y };
            lines.push(p);
            X = X + t;
        }

        //draw straight line
        ctx.beginPath();
        ctx.setLineDash([5]);
        ctx.lineWidth = 1;
        bzCurve(lines, 0, 1);

        //draw smooth line
        ctx.setLineDash([0]);
        ctx.lineWidth = 2;
        ctx.strokeStyle = \"blue\";
        bzCurve(lines, 0.3, 1);
    </script>
</body>
</html>


回答7:

I found this to work nicely

function drawCurve(points, tension) {
    ctx.beginPath();
    ctx.moveTo(points[0].x, points[0].y);

    var t = (tension != null) ? tension : 1;
    for (var i = 0; i < points.length - 1; i++) {
        var p0 = (i > 0) ? points[i - 1] : points[0];
        var p1 = points[i];
        var p2 = points[i + 1];
        var p3 = (i != points.length - 2) ? points[i + 2] : p2;

        var cp1x = p1.x + (p2.x - p0.x) / 6 * t;
        var cp1y = p1.y + (p2.y - p0.y) / 6 * t;

        var cp2x = p2.x - (p3.x - p1.x) / 6 * t;
        var cp2y = p2.y - (p3.y - p1.y) / 6 * t;

        ctx.bezierCurveTo(cp1x, cp1y, cp2x, cp2y, p2.x, p2.y);
    }
    ctx.stroke();
}


回答8:

To add to K3N\'s cardinal splines method and perhaps address T. J. Crowder\'s concerns about curves \'dipping\' in misleading places, I inserted the following code in the getCurvePoints() function, just before res.push(x);

if ((y < _pts[i+1] && y < _pts[i+3]) || (y > _pts[i+1] && y > _pts[i+3])) {
    y = (_pts[i+1] + _pts[i+3]) / 2;
}
if ((x < _pts[i] && x < _pts[i+2]) || (x > _pts[i] && x > _pts[i+2])) {
    x = (_pts[i] + _pts[i+2]) / 2;
}

This effectively creates a (invisible) bounding box between each pair of successive points and ensures the curve stays within this bounding box - ie. if a point on the curve is above/below/left/right of both points, it alters its position to be within the box. Here the midpoint is used, but this could be improved upon, perhaps using linear interpolation.



回答9:

Incredibly late but inspired by Homan\'s brilliantly simple answer, allow me to post a more general solution (general in the sense that Homan\'s solution crashes on arrays of points with less than 3 vertices):

function smooth(ctx, points)
{
    if(points == undefined || points.length == 0)
    {
        return true;
    }
    if(points.length == 1)
    {
        ctx.moveTo(points[0].x, points[0].y);
        ctx.lineTo(points[0].x, points[0].y);
        return true;
    }
    if(points.length == 2)
    {
        ctx.moveTo(points[0].x, points[0].y);
        ctx.lineTo(points[1].x, points[1].y);
        return true;
    }
    ctx.moveTo(points[0].x, points[0].y);
    for (var i = 1; i < points.length - 2; i ++)
    {
        var xc = (points[i].x + points[i + 1].x) / 2;
        var yc = (points[i].y + points[i + 1].y) / 2;
        ctx.quadraticCurveTo(points[i].x, points[i].y, xc, yc);
    }
    ctx.quadraticCurveTo(points[i].x, points[i].y, points[i+1].x, points[i+1].y);
}