Thanks to Mike for the suggestion to add the create/insert statements.
create table test (
pid integer not null,
date date not null,
primary key (pid, date)
);
insert into test values
(1,'2014-10-1')
, (1,'2014-10-2')
, (1,'2014-10-3')
, (1,'2014-10-5')
, (1,'2014-10-7')
, (2,'2014-10-1')
, (2,'2014-10-2')
, (2,'2014-10-3')
, (2,'2014-10-5')
, (2,'2014-10-7');
I want to add a new column that is 'days in current streak'
so the result would look like:
pid | date | in_streak
-------|-----------|----------
1 | 2014-10-1 | 1
1 | 2014-10-2 | 2
1 | 2014-10-3 | 3
1 | 2014-10-5 | 1
1 | 2014-10-7 | 1
2 | 2014-10-2 | 1
2 | 2014-10-3 | 2
2 | 2014-10-4 | 3
2 | 2014-10-6 | 1
I've been trying to use the answers from
- PostgreSQL: find number of consecutive days up until now
- Return rows of the latest 'streak' of data
but I can't work out how to use the dense_rank()
trick with other window functions to get the right result.
Building on this table (not using the SQL keyword "date" as column name.):
CREATE TABLE tbl(
pid int
, the_date date
, PRIMARY KEY (pid, the_date)
);
Query:
SELECT pid, the_date
, row_number() OVER (PARTITION BY pid, grp ORDER BY the_date) AS in_streak
FROM (
SELECT *, the_date - '2000-01-01'::date - row_number()
OVER (PARTITION BY pid ORDER BY the_date) AS grp
FROM tbl
) sub
ORDER BY pid, the_date;
Subtracting a date
from another date
yields an integer
. Since you are looking for consecutive days, every next row would be greater by one. If we subtract row_number()
from that, the whole streak ends up in the same group (grp
) per pid
. Then it's simple to deal out number per group.
grp
is calculated with two subtractions, which should be fastest. An equally fast alternative could be:
the_date - row_number() OVER (PARTITION BY pid ORDER BY the_date) * interval '1d' AS grp
One multiplication, one subtraction. String concatenation and casting is more expensive. Test with EXPLAIN ANALYZE
.
Don't forget to partition by pid
additionally in both steps, or you'll inadvertently mix groups that should be separated.
Using a subquery, since that is typically faster than a CTE. There is nothing here that a plain subquery couldn't do.
And since you mentioned it: dense_rank()
is obviously not necessary here. Basic row_number()
does the job.
You'll get more attention if you include CREATE TABLE statements and INSERT statements in your question.
create table test (
pid integer not null,
date date not null,
primary key (pid, date)
);
insert into test values
(1,'2014-10-1'), (1,'2014-10-2'), (1,'2014-10-3'), (1,'2014-10-5'),
(1,'2014-10-7'), (2,'2014-10-1'), (2,'2014-10-2'), (2,'2014-10-3'),
(2,'2014-10-5'), (2,'2014-10-7');
The principle is simple. A streak of distinct, consecutive dates minus row_number() is a constant. You can group by the constant, and take the dense_rank() over that result.
with grouped_dates as (
select pid, date,
(date - (row_number() over (partition by pid order by date) || ' days')::interval)::date as grouping_date
from test
)
select * , dense_rank() over (partition by grouping_date order by date) as in_streak
from grouped_dates
order by pid, date
pid date grouping_date in_streak
--
1 2014-10-01 2014-09-30 1
1 2014-10-02 2014-09-30 2
1 2014-10-03 2014-09-30 3
1 2014-10-05 2014-10-01 1
1 2014-10-07 2014-10-02 1
2 2014-10-01 2014-09-30 1
2 2014-10-02 2014-09-30 2
2 2014-10-03 2014-09-30 3
2 2014-10-05 2014-10-01 1
2 2014-10-07 2014-10-02 1