scipy.optimize.linprog unable to find a feasible s

2019-02-13 22:37发布

问题:

the vector k seems to satisfy all constraints. Is there something I'm missing here? Thanks.

import numpy as np
from scipy.optimize import linprog
A_ub=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1]]
b_ub=[ 10000.,    100.,  10000.,   1840.,  10000.,   4000.,  10000.,
      100.,  10000.,   5000.,  10000.,   5450.,  10000.,   3000.,
    10000.,   3000.,  10000.,   1000.,  40000.,   5000.,   5000.]
A_eq=[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, -5000.0, 13390.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, -1840.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 5000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [13290.0, 0.0, -13390.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, 0.0, 1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, -5450.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1], [-13290.0, 5000.0, 0.0, 1840.0, 5450.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0, -1.0, 0.0, 0.0, 1.0, -1.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1]]
b_eq=[8390.0, 0, -1840.0, 0, 5000.0, 0, -100.0, 0, 0.0, 0, -5450.0, 0, 0.0, 0, 0.0, 0, -1000.0, 0]
c=[-1351.6146468256165, -99.629272305631787, -542.0389808700279, -0.0, 54.302887927385768, -0.043903442258601377, -0.10170162880553937, -0.043903442258601377, -0.043903442258601377, -0.043903442258601377, -0.11764394156352764, -0.043903442258601377, -0.056182133775492554, -0.043903442258601377, -0.043903442258601377, -0.033174575907634424, -0.081074546005202835, -0.043903442258601377, -0.057503980336247616, -0.040480879825992883, -0.046889515046147204, -0.10170162880553937, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0, 0.02, 0.02, 0, 0]
k=[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8390.0, 0, 0, 0, 0, 1840.0, 0, 0, 5000.0, 0, 0, 0, 0, 100.0, 0, 0, 0.0, 0.0, 0, 0, 0, 5450.0, 0, 0, 0.0, 0.0, 0, 0, 0.0, 0.0, 0, 0, 0, 1000.0]

print(all(np.dot(A_ub, k)<=b_ub))
print(all(np.dot(A_eq, k)==b_eq))
print(all(map(lambda x :x>=0, k)))
linprog(c, A_ub, b_ub, A_eq, b_eq)

回答1:

This answer doesn't explain why it works. I hope someone more familiar with the linprog code or with linear programming in general can give a more thorough answer.


I get a solution if I use the option bland=True (see show_options for documentation--scroll to the bottom for the linprog options):

In [130]: linprog(c, A_ub, b_ub, A_eq, b_eq, options=dict(bland=True))
Out[130]: 
  status: 0
   slack: array([  3610.,   6490.,  11840.,      0.,      0.,  14000.,  10100.,
            0.,  10000.,   5000.,  15450.,      0.,  13000.,      0.,
        10000.,   3000.,  11000.,      0.,  12220.,      0.,  10000.])
 success: True
     fun: -2683.6935269049131
       x: array([  1.22573363e+00,   2.00000000e+00,   1.22404780e+00,
         3.71739130e+00,   8.25688073e-02,   2.00000000e+03,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         5.00000000e+03,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   2.00000000e+03,
         6.39000000e+03,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   1.84000000e+03,
         5.00000000e+03,   0.00000000e+00,   1.00000000e+04,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   1.00000000e+02,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,  -1.11022302e-12,   0.00000000e+00,
         5.45000000e+03,   0.00000000e+00,   3.00000000e+03,
         0.00000000e+00,   3.00000000e+03,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         1.00000000e+03])
 message: 'Optimization terminated successfully.'
     nit: 50

One component is slightly negative (-1.11e-12). Presumably this is within the default tolerance. That can be cleaned up by lowering the tolerance (but note the change in x[19]):

In [131]: linprog(c, A_ub, b_ub, A_eq, b_eq, options=dict(bland=True, tol=1e-15))
Out[131]: 
  status: 0
   slack: array([  3610.,   6490.,  11840.,      0.,      0.,  14000.,  10100.,
            0.,  10000.,   5000.,  15450.,      0.,  13000.,      0.,
        10000.,   3000.,  11000.,      0.,  12220.,      0.,  10000.])
 success: True
     fun: -2683.693526904935
       x: array([  1.22573363e+00,   2.00000000e+00,   0.00000000e+00,
         3.71739130e+00,   8.25688073e-02,   2.00000000e+03,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         5.00000000e+03,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   1.63900000e+04,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   2.00000000e+03,
         6.39000000e+03,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   1.84000000e+03,
         5.00000000e+03,   0.00000000e+00,   1.00000000e+04,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   1.00000000e+02,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         5.45000000e+03,   0.00000000e+00,   3.00000000e+03,
         0.00000000e+00,   3.00000000e+03,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         1.00000000e+03])
 message: 'Optimization terminated successfully.'
     nit: 51


回答2:

It seems like a tolerance issue.

I was able to "fix" it by importing the original linprog code, after I changed the tolerance (tol parameter) from 10e-12 to 10e-8 in the "private" method _linprog_simplex.

This parameter is passed to the method _pivot_col, which reads

ma = np.ma.masked_where(T[-1, :-1] >= -tol, T[-1, :-1], copy=False)
    if ma.count() == 0:
        return False, np.nan
    if bland:
        return True, np.where(ma.mask == False)[0][0]
    return True, np.ma.where(ma == ma.min())[0][0]

This is why bland's rule passes the test, while the default one fails. I then tried to find if there is any default tolerance in the implementation of numpy.masked_where. From there, it is not obvious what is the tolerance that is used, but other numpy functions, such as masked_values, have an absolute tolerance of 10e-8 by default.

I hope this helps.

Here is the result I am getting by changing the tolerance in _linprog_simplex:

True
True
True
  status: 0
   slack: array([  3610.,   6490.,  11840.,      0.,      0.,  14000.,  10100.,
            0.,  10000.,   5000.,  15450.,      0.,  13000.,      0.,
        10000.,   3000.,  11000.,      0.,  12220.,      0.,  10000.])
 success: True
     fun: -2683.6935269049141
       x: array([  1.22573363e+00,   2.00000000e+00,   1.22404780e+00,
         3.71739130e+00,   8.25688073e-02,   2.00000000e+03,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         5.00000000e+03,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   2.00000000e+03,
         6.39000000e+03,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   1.84000000e+03,
         5.00000000e+03,   0.00000000e+00,   1.00000000e+04,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   1.00000000e+02,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         5.45000000e+03,   0.00000000e+00,   3.00000000e+03,
         0.00000000e+00,   3.00000000e+03,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
         1.00000000e+03])
 message: 'Optimization terminated successfully.'
     nit: 26

PS: I also had to change the line

from .optimize import OptimizeResult, _check_unknown_options

to

from scipy.optimize import OptimizeResult

and remove the call to _check_unknown_options in line 533 of the original code.



回答3:

I don't know very well the internals of the algorithm, but there seem to be a "scale" issue (sorry if this term is not the best). Similarly to this issue it appears that your input numbers are not correlated to the default tolerance and the algorithm doesn't normalize data.

Try to multiply everything by, say 0.001 and see if it works, I'm guessing it will.