I have dataframe in which I have about 1000s ( variable) columns.
I want to make all values upper case.
Here is the approach I have thought of , can you suggest if this is best way.
- Take row
- Find schema and store in array and find how many fields are there.
- map through each row in data frame and upto limit of number of elements in array
- apply function to upper case each fields and return row
If you simply want to apply the same functions to all columns something like this should be enough:
import org.apache.spark.sql.functions.{col, upper}
val df = sc.parallelize(
Seq(("a", "B", "c"), ("D", "e", "F"))).toDF("x", "y", "z")
df.select(df.columns.map(c => upper(col(c)).alias(c)): _*).show
// +---+---+---+
// | x| y| z|
// +---+---+---+
// | A| B| C|
// | D| E| F|
// +---+---+---+
or in Python
from pyspark.sql.functions import col, upper
df = sc.parallelize([("a", "B", "c"), ("D", "e", "F")]).toDF(("x", "y", "z"))
df.select(*(upper(col(c)).alias(c) for c in df.columns)).show()
## +---+---+---+
## | x| y| z|
## +---+---+---+
## | A| B| C|
## | D| E| F|
## +---+---+---+
See also: SparkSQL: apply aggregate functions to a list of column