python matplotlib plot sparse matrix pattern

2019-02-13 13:13发布

问题:

Given a sparse binary matrix A (csr, coo, whatever) I want to make a plot such that I can see the position (i,j) = white in the figure if A(i,j) = 1, and (i,j) = black if A(i,j) = 0;

For a dense numpy array, matshow will do the job. However, the dimension of my sparse matrix (say 100000 x 1000000) is to big to be converted to a dense array. I wonder how could I plot the pattern in my sparse matrix.

Thanks

回答1:

You can get a nice result using a coo_matrix, plot() and some adjustments:

import matplotlib.pyplot as plt
from scipy.sparse import coo_matrix

def plot_coo_matrix(m):
    if not isinstance(m, coo_matrix):
        m = coo_matrix(m)
    fig = plt.figure()
    ax = fig.add_subplot(111, axisbg='black')
    ax.plot(m.col, m.row, 's', color='white', ms=1)
    ax.set_xlim(0, m.shape[1])
    ax.set_ylim(0, m.shape[0])
    ax.set_aspect('equal')
    for spine in ax.spines.values():
        spine.set_visible(False)
    ax.invert_yaxis()
    ax.set_aspect('equal')
    ax.set_xticks([])
    ax.set_yticks([])
    return ax

Note that the y axis is inverted to put the first row at the top of the figure. One example:

import numpy as np
from scipy.sparse import coo_matrix

shape = (100000, 100000)
rows = np.int_(np.round_(shape[0]*np.random.random(1000)))
cols = np.int_(np.round_(shape[1]*np.random.random(1000)))
vals = np.ones_like(rows)

m = coo_matrix((vals, (rows, cols)), shape=shape)
ax = plot_coo_matrix(m)
ax.figure.show()



回答2:

There is a function (spy) in Matplotlib for that:

scipy equivalent for MATLAB spy

http://matplotlib.org/examples/pylab_examples/spy_demos.html