I'm using Spark 1.3.1 and I'm curious why Spark doesn't allow using array keys on map-side combining.
Piece of combineByKey function
:
if (keyClass.isArray) {
if (mapSideCombine) {
throw new SparkException("Cannot use map-side combining with array keys.")
}
}
Basically for the same reason why default partitioner cannot partition array keys.
Scala Array
is just a wrapper around Java array and its hashCode
doesn't depend on a content:
scala> val x = Array(1, 2, 3)
x: Array[Int] = Array(1, 2, 3)
scala> val h = x.hashCode
h: Int = 630226932
scala> x(0) = -1
scala> x.hashCode() == h1
res3: Boolean = true
It means that two arrays with exact the same content are not equal
scala> x
res4: Array[Int] = Array(-1, 2, 3)
scala> val y = Array(-1, 2, 3)
y: Array[Int] = Array(-1, 2, 3)
scala> y == x
res5: Boolean = false
As result Arrays
cannot be used as a meaningful keys. If you're not convinced just check what happens when you use Array
as key for Scala Map
:
scala> Map(Array(1) -> 1, Array(1) -> 2)
res7: scala.collection.immutable.Map[Array[Int],Int] = Map(Array(1) -> 1, Array(1) -> 2)
If you want to use a collection as key you should use an immutable data structure like a Vector
or a List
.
scala> Map(Array(1).toVector -> 1, Array(1).toVector -> 2)
res15: scala.collection.immutable.Map[Vector[Int],Int] = Map(Vector(1) -> 2)
See also:
- SI-1607
- How does HashPartitioner work?
- A list as a key for PySpark's reduceByKey