scipy.sparse.coo_matrix.max
returns the maximum value of each row or column, given an axis. I would like to know not the value, but the index of the maximum value of each row or column. I haven't found a way to make this in an efficient manner yet, so I'll gladly accept any help.
问题:
回答1:
From scipy version 0.19, both csr_matrix
and csc_matrix
support argmax()
and argmin()
methods.
回答2:
I would suggest studying the code for
moo._min_or_max_axis
where moo
is a coo_matrix
.
mat = mat.tocsc() # for axis=0
mat.sum_duplicates()
major_index, value = mat._minor_reduce(min_or_max)
not_full = np.diff(mat.indptr)[major_index] < N
value[not_full] = min_or_max(value[not_full], 0)
mask = value != 0
major_index = np.compress(mask, major_index)
value = np.compress(mask, value)
return coo_matrix((value, (np.zeros(len(value)), major_index)),
dtype=self.dtype, shape=(1, M))
Depending on the axis it prefers to work with csc over csr. I haven't had time analyze this, but I'm guessing it should be possible to include argmax
in the calculation.
This suggestion may not work. The key is the mat._minor_reduce
method, which does, with some refinement:
ufunc.reduceat(mat.data, mat.indptr[:-1])
That is is applies the ufunc
to blocks of the matrix data
array, using the indptr
to define the blocks. np.sum
, np.maxiumum
are ufunc
where this works. I don't know of an equivalent argmax
ufunc.
In general if you want to do things by 'row' for a csr matrix (or col of csc), you either have to iterate over the rows, which is relatively expensive, or use this ufunc.reduceat
to do the same thing over the flat mat.data
vector.
group argmax/argmin over partitioning indices in numpy
tries to perform a argmax.reduceat
. The solution there might be adaptable to a sparse matrix.
回答3:
If A
is your scipy.sparse.coo_matrix
, then you get the row and column of the maximum value as follows:
I=A.data.argmax()
maxrow = A.row[I]
maxcol=A.col[I]
To get the index of maximum value on each row see the EDIT below:
from scipy.sparse import coo_matrix
import numpy as np
row = np.array([0, 3, 1, 0])
col = np.array([0, 2, 3, 2])
data = np.array([-3, 4, 11, -7])
A= coo_matrix((data, (row, col)), shape=(4, 4))
print A.toarray()
nrRows=A.shape[0]
maxrowind=[]
for i in range(nrRows):
r = A.getrow(i)# r is 1xA.shape[1] matrix
maxrowind.append( r.indices[r.data.argmax()] if r.nnz else 0)
print maxrowind
r.nnz
is the the count of explicitly-stored values (i.e. nonzero values)
回答4:
The latest release of the numpy_indexed package (disclaimer: I am its author) can solve this problem in an efficient and elegant manner:
import numpy_indexed as npi
col, argmax = group_by(coo.col).argmax(coo.data)
row = coo.row[argmax]
Here we group by col, so its the argmax over the columns; swapping row and col will give you the argmax over the rows.
回答5:
Expanding on the answers from @hpaulj and @joeln and using code from group argmax/argmin over partitioning indices in numpy as suggested, this function will calculate argmax over columns for CSR or argmax over rows for CSC:
import numpy as np
import scipy.sparse as sp
def csr_csc_argmax(X, axis=None):
is_csr = isinstance(X, sp.csr_matrix)
is_csc = isinstance(X, sp.csc_matrix)
assert( is_csr or is_csc )
assert( not axis or (is_csr and axis==1) or (is_csc and axis==0) )
major_size = X.shape[0 if is_csr else 1]
major_lengths = np.diff(X.indptr) # group_lengths
major_not_empty = (major_lengths > 0)
result = -np.ones(shape=(major_size,), dtype=X.indices.dtype)
split_at = X.indptr[:-1][major_not_empty]
maxima = np.zeros((major_size,), dtype=X.dtype)
maxima[major_not_empty] = np.maximum.reduceat(X.data, split_at)
all_argmax = np.flatnonzero(np.repeat(maxima, major_lengths) == X.data)
result[major_not_empty] = X.indices[all_argmax[np.searchsorted(all_argmax, split_at)]]
return result
It returns -1 for the argmax of any rows (CSR) or columns (CSC) that are completely sparse (i.e., that are completely zero after X.eliminate_zeros()
).