Keras + Tensorflow: Prediction on multiple gpus

2019-02-12 03:20发布

问题:

I'm using Keras with tensorflow as backend. I have one compiled/trained model.

My prediction loop is slow so I would like to find a way to parallelize the predict_proba calls to speed things up. I would like to take a list of batches (of data) and then per available gpu, run model.predict_proba() over a subset of those batches.
Essentially:

data = [ batch_0, batch_1, ... , batch_N ]
on gpu_0 => return predict_proba(batch_0)
on gpu_1 => return predict_proba(batch_1)
...
on gpu_N => return predict_proba(batch_N) 

I know that it's possible in pure Tensorflow to assign ops to a given gpu (https://www.tensorflow.org/tutorials/using_gpu). However, I don't know how this translates to my situation since I've built/compiled/trained my model using Keras' api.

I had thought that maybe I just needed to use python's multiprocessing module and start a process per gpu that would run predict_proba(batch_n). I know this is theoretically possible given another SO post of mine: Keras + Tensorflow and Multiprocessing in Python. However, this still leaves me with the dilemma of not knowing how to actually "choose" a gpu to operate the process on.

My question boils down to: how does one parallelize prediction for one model in Keras across multiple gpus when using Tensorflow as Keras' backend?

Additionally I am curious if similar parallelization for prediction is possible with only one gpu.

A high level description or code example would be greatly appreciated!

Thanks!

回答1:

I created one simple example to show how to run keras model across multiple gpus. Basically, multiple processes are created and each of process owns a gpu. To specify the gpu id in process, setting env variable CUDA_VISIBLE_DEVICES is a very straightforward way (os.environ["CUDA_VISIBLE_DEVICES"]). Hope this git repo can help you.

https://github.com/yuanyuanli85/Keras-Multiple-Process-Prediction



回答2:

You can use this function to parallelize a Keras model (credits to kuza55).
https://github.com/kuza55/keras-extras/blob/master/utils/multi_gpu.py
.

from keras.layers import merge
from keras.layers.core import Lambda
from keras.models import Model

import tensorflow as tf

def make_parallel(model, gpu_count):
    def get_slice(data, idx, parts):
        shape = tf.shape(data)
        size = tf.concat([ shape[:1] // parts, shape[1:] ],axis=0)
        stride = tf.concat([ shape[:1] // parts, shape[1:]*0 ],axis=0)
        start = stride * idx
        return tf.slice(data, start, size)

    outputs_all = []
    for i in range(len(model.outputs)):
        outputs_all.append([])

    #Place a copy of the model on each GPU, each getting a slice of the batch
    for i in range(gpu_count):
        with tf.device('/gpu:%d' % i):
            with tf.name_scope('tower_%d' % i) as scope:

                inputs = []
                #Slice each input into a piece for processing on this GPU
                for x in model.inputs:
                    input_shape = tuple(x.get_shape().as_list())[1:]
                    slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx':i,'parts':gpu_count})(x)
                    inputs.append(slice_n)                

                outputs = model(inputs)

                if not isinstance(outputs, list):
                    outputs = [outputs]

                #Save all the outputs for merging back together later
                for l in range(len(outputs)):
                    outputs_all[l].append(outputs[l])

    # merge outputs on CPU
    with tf.device('/cpu:0'):
        merged = []
        for outputs in outputs_all:
            merged.append(merge(outputs, mode='concat', concat_axis=0))

        return Model(input=model.inputs, output=merged)