How to join multiple data frames using dplyr?

2019-02-11 22:15发布

问题:

I want to left_join multiple data frames:

dfs <- list(
  df1 = data.frame(a = 1:3, b = c("a", "b", "c")),
  df2 = data.frame(c = 4:6, b = c("a", "c", "d")),
  df3 = data.frame(d = 7:9, b = c("b", "c", "e"))
)
Reduce(left_join, dfs)
#   a b  c  d
# 1 1 a  4 NA
# 2 2 b NA  7
# 3 3 c  5  8

This works because they all have the same b column, but Reduce doesn't let me specify additional arguments that I can pass to left_join. Is there a work around for something like this?

dfs <- list(
  df1 = data.frame(a = 1:3, b = c("a", "b", "c")),
  df2 = data.frame(c = 4:6, d = c("a", "c", "d")),
  df3 = data.frame(d = 7:9, b = c("b", "c", "e"))
)

Update

This kind of works: Reduce(function(...) left_join(..., by = c("b" = "d")), dfs) but when by is more than one element it gives this error: Error: cannot join on columns 'b' x 'd': index out of bounds

回答1:

It's been too late i know....today I got introduced to the unanswered questions section. Sorry to bother.

Using left_join()

dfs <- list(
              df1 = data.frame(b = c("a", "b", "c"), a = 1:3),
              df2 = data.frame(d = c("a", "c", "d"), c = 4:6),
              df3 = data.frame(b = c("b", "c", "e"), d = 7:9)
         )

func <- function(...){
  df1 = list(...)[[1]]
  df2 = list(...)[[2]]
  col1 = colnames(df1)[1]
  col2 = colnames(df2)[1]
  xxx = left_join(..., by = setNames(col2,col1))
  return(xxx)
}
Reduce( func, dfs)
#  b a  c  d
#1 a 1  4 NA
#2 b 2 NA  7
#3 c 3  5  8

Using merge() :

func <- function(...){
  df1 = list(...)[[1]]
  df2 = list(...)[[2]]
  col1 = colnames(df1)[1]
  col2 = colnames(df2)[1]
  xxx=merge(..., by.x = col1, by.y = col2, , all.x = T)
  return(xxx)
}

Reduce( func, dfs)
#  b a  c  d
#1 a 1  4 NA
#2 b 2 NA  7
#3 c 3  5  8


回答2:

Would this work for you?

jnd.tbl <- df1 %>%
    left_join(df2, by='b') %>%
    left_join(df3, by='d')


标签: r dplyr reduce