it's known that when the number of variables (p) is larger than the number of samples (n) the least square estimator is not defined.
In sklearn I receive this values:
In [30]: lm = LinearRegression().fit(xx,y_train)
In [31]: lm.coef_
Out[31]:
array([[ 0.20092363, -0.14378298, -0.33504391, ..., -0.40695124,
0.08619906, -0.08108713]])
In [32]: xx.shape
Out[32]: (1097, 3419)
Call [30] should return an error. How does sklearn work when p>n like in this case?
EDIT:
It seems that the matrix is filled with some values
if n > m:
# need to extend b matrix as it will be filled with
# a larger solution matrix
if len(b1.shape) == 2:
b2 = np.zeros((n, nrhs), dtype=gelss.dtype)
b2[:m,:] = b1
else:
b2 = np.zeros(n, dtype=gelss.dtype)
b2[:m] = b1
b1 = b2
When the linear system is underdetermined, then the sklearn.linear_model.LinearRegression
finds the minimum L2
norm solution, i.e.
argmin_w l2_norm(w) subject to Xw = y
This is always well defined and obtainable by applying the pseudoinverse of X
to y
, i.e.
w = np.linalg.pinv(X).dot(y)
The specific implementation of scipy.linalg.lstsq
, which is used by LinearRegression
uses get_lapack_funcs(('gelss',), ...
which is precisely a solver that finds the minimum norm solution via singular value decomposition (provided by LAPACK).
Check out this example
import numpy as np
rng = np.random.RandomState(42)
X = rng.randn(5, 10)
y = rng.randn(5)
from sklearn.linear_model import LinearRegression
lr = LinearRegression(fit_intercept=False)
coef1 = lr.fit(X, y).coef_
coef2 = np.linalg.pinv(X).dot(y)
print(coef1)
print(coef2)
And you will see that coef1 == coef2
. (Note that fit_intercept=False
is specified in the constructor of the sklearn estimator, because otherwise it would subtract the mean of each feature before fitting the model, yielding different coefficients)