可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试):
问题:
I\'m trying to use matplotlib
to read in an RGB image and convert it to grayscale.
In matlab I use this:
img = rgb2gray(imread(\'image.png\'));
In the matplotlib tutorial they don\'t cover it. They just read in the image
import matplotlib.image as mpimg
img = mpimg.imread(\'image.png\')
and then they slice the array, but that\'s not the same thing as converting RGB to grayscale from what I understand.
lum_img = img[:,:,0]
I find it hard to believe that numpy or matplotlib doesn\'t have a built-in function to convert from rgb to gray. Isn\'t this a common operation in image processing?
I wrote a very simple function that works with the image imported using imread
in 5 minutes. It\'s horribly inefficient, but that\'s why I was hoping for a professional implementation built-in.
Sebastian has improved my function, but I\'m still hoping to find the built-in one.
matlab\'s (NTSC/PAL) implementation:
import numpy as np
def rgb2gray(rgb):
r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
回答1:
How about doing it with Pillow:
from PIL import Image
img = Image.open(\'image.png\').convert(\'LA\')
img.save(\'greyscale.png\')
Using matplotlib and the formula
Y\' = 0.299 R + 0.587 G + 0.114 B
you could do:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def rgb2gray(rgb):
return np.dot(rgb[...,:3], [0.299, 0.587, 0.114])
img = mpimg.imread(\'image.png\')
gray = rgb2gray(img)
plt.imshow(gray, cmap = plt.get_cmap(\'gray\'))
plt.show()
回答2:
You can also use scikit-image, which provides some functions to convert an image in ndarray
, like rgb2gray
.
from skimage import color
from skimage import io
img = color.rgb2gray(io.imread(\'image.png\'))
Notes: The weights used in this conversion are calibrated for contemporary CRT phosphors: Y = 0.2125 R + 0.7154 G + 0.0721 B
Alternatively, you can read image in grayscale by:
from skimage import io
img = io.imread(\'image.png\', as_grey=True)
回答3:
Three of the suggested methods were tested for speed with 1000 RGBA PNG images (224 x 256 pixels) running with Python 3.5 on Ubuntu 16.04 LTS (Xeon E5 2670 with SSD).
Average run times
pil :
1.037 seconds
scipy:
1.040 seconds
sk :
2.120 seconds
PIL and SciPy gave identical numpy
arrays (ranging from 0 to 255). SkImage gives arrays from 0 to 1. In addition the colors are converted slightly different, see the example from the CUB-200 dataset.
SkImage:
PIL :
SciPy :
Original:
Diff :
Code
Performance
run_times = dict(sk=list(), pil=list(), scipy=list())
for t in range(100):
start_time = time.time()
for i in range(1000):
z = random.choice(filenames_png)
img = skimage.color.rgb2gray(skimage.io.imread(z))
run_times[\'sk\'].append(time.time() - start_time)
start_time = time.time()
for i in range(1000):
z = random.choice(filenames_png)
img = np.array(Image.open(z).convert(\'L\'))
run_times[\'pil\'].append(time.time() - start_time)
start_time = time.time()
for i in range(1000):
z = random.choice(filenames_png)
img = scipy.ndimage.imread(z, mode=\'L\')
run_times[\'scipy\'].append(time.time() - start_time)
for k, v in run_times.items():
print(\'{:5}: {:0.3f} seconds\'.format(k, sum(v) / len(v)))
- Output
z = \'Cardinal_0007_3025810472.jpg\'
img1 = skimage.color.rgb2gray(skimage.io.imread(z)) * 255
IPython.display.display(PIL.Image.fromarray(img1).convert(\'RGB\'))
img2 = np.array(Image.open(z).convert(\'L\'))
IPython.display.display(PIL.Image.fromarray(img2))
img3 = scipy.ndimage.imread(z, mode=\'L\')
IPython.display.display(PIL.Image.fromarray(img3))
- Comparison
img_diff = np.ndarray(shape=img1.shape, dtype=\'float32\')
img_diff.fill(128)
img_diff += (img1 - img3)
img_diff -= img_diff.min()
img_diff *= (255/img_diff.max())
IPython.display.display(PIL.Image.fromarray(img_diff).convert(\'RGB\'))
- Imports
import skimage.color
import skimage.io
import random
import time
from PIL import Image
import numpy as np
import scipy.ndimage
import IPython.display
- Versions
skimage.version
0.13.0
scipy.version
0.19.1
np.version
1.13.1
回答4:
You can always read the image file as grayscale right from the beginning using imread
from OpenCV:
img = cv2.imread(\'messi5.jpg\', 0)
Furthermore, in case you want to read the image as RGB, do some processing and then convert to Gray Scale you could use cvtcolor
from OpenCV:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
回答5:
The fastest and current way is to use Pillow, installed via pip install Pillow
.
The code is then:
from PIL import Image
img = Image.open(\'input_file.jpg\').convert(\'L\')
img.save(\'output_file.jpg\')
回答6:
The tutorial is cheating because it is starting with a greyscale image encoded in RGB, so they are just slicing a single color channel and treating it as greyscale. The basic steps you need to do are to transform from the RGB colorspace to a colorspace that encodes with something approximating the luma/chroma model, such as YUV/YIQ or HSL/HSV, then slice off the luma-like channel and use that as your greyscale image. matplotlib
does not appear to provide a mechanism to convert to YUV/YIQ, but it does let you convert to HSV.
Try using matplotlib.colors.rgb_to_hsv(img)
then slicing the last value (V) from the array for your grayscale. It\'s not quite the same as a luma value, but it means you can do it all in matplotlib
.
Background:
- http://matplotlib.sourceforge.net/api/colors_api.html
- http://en.wikipedia.org/wiki/HSL_and_HSV
Alternatively, you could use PIL or the builtin colorsys.rgb_to_yiq()
to convert to a colorspace with a true luma value. You could also go all in and roll your own luma-only converter, though that\'s probably overkill.
回答7:
If you\'re using NumPy/SciPy already you may as well use:
scipy.ndimage.imread(file_name, mode=\'L\')
Hth,
dtk
回答8:
I came to this question via Google, searching for a way to convert an already loaded image to grayscale.
Here is a way to do it with SciPy:
import scipy.misc
import scipy.ndimage
# Load an example image
# Use scipy.ndimage.imread(file_name, mode=\'L\') if you have your own
img = scipy.misc.face()
# Convert the image
R = img[:, :, 0]
G = img[:, :, 1]
B = img[:, :, 2]
img_gray = R * 299. / 1000 + G * 587. / 1000 + B * 114. / 1000
# Show the image
scipy.misc.imshow(img_gray)
回答9:
you could do:
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
def rgb_to_gray(img):
grayImage = np.zeros(img.shape)
R = np.array(img[:, :, 0])
G = np.array(img[:, :, 1])
B = np.array(img[:, :, 2])
R = (R *.299)
G = (G *.587)
B = (B *.114)
Avg = (R+G+B)
grayImage = img
for i in range(3):
grayImage[:,:,i] = Avg
return grayImage
image = mpimg.imread(\"your_image.png\")
grayImage = rgb_to_gray(image)
plt.imshow(grayImage)
plt.show()
回答10:
Use img.Convert(), supports “L”, “RGB” and “CMYK.” mode
import numpy as np
from PIL import Image
img = Image.open(\"IMG/center_2018_02_03_00_34_32_784.jpg\")
img.convert(\'L\')
print np.array(img)
Output:
[[135 123 134 ..., 30 3 14]
[137 130 137 ..., 9 20 13]
[170 177 183 ..., 14 10 250]
...,
[112 99 91 ..., 90 88 80]
[ 95 103 111 ..., 102 85 103]
[112 96 86 ..., 182 148 114]]
回答11:
Using this formula
Y\' = 0.299 R + 0.587 G + 0.114 B
We can do
import imageio
import numpy as np
import matplotlib.pyplot as plt
pic = imageio.imread(\'(image)\')
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587, 0.114])
gray = gray(pic)
plt.imshow(gray, cmap = plt.get_cmap(name = \'gray\'))
However, the GIMP converting color to grayscale image software has three algorithms to do the task.
回答12:
image=myCamera.getImage().crop(xx,xx,xx,xx).scale(xx,xx).greyscale()
You can use greyscale()
directly for the transformation.