I have successfully trained a simple model in Keras to classify images:
model = Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='valid', input_shape=(img_channels, img_rows, img_cols),
activation='relu', name='conv1_1'))
model.add(Convolution2D(32, 3, 3, activation='relu', name='conv1_2'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border_mode='valid', activation='relu', name='conv2_1'))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv2_2'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
I can also predict the image classes using
y_pred = model.predict_classes(img, 1, verbose=0)
However the output of y_pred
is always binary. This also seems to be the case when using predict_proba
and predict
. My outputs are in this form
[[ 1. 0. 0. 0.]]
[[ 0. 1. 0. 0.]]
This works OK, but I'd like to have a probability percent for each classification, for example
[[ 0.8 0.1 0.1 0.4]]
How do I get this in Keras?