I am trying to build a neural network model with one hidden layer (1024 nodes). The hidden layer is nothing but a relu unit. I am also processing the input data in batches of 128.
The inputs are images of size 28 * 28. In the following code I get the error in line
_, c = sess.run([optimizer, loss], feed_dict={x: batch_x, y: batch_y})
Error: TypeError: Cannot interpret feed_dict key as Tensor: Tensor Tensor("Placeholder_64:0", shape=(128, 784), dtype=float32) is not an element of this graph.
Here is the code I have written
#Initialize
batch_size = 128
layer1_input = 28 * 28
hidden_layer1 = 1024
num_labels = 10
num_steps = 3001
#Create neural network model
def create_model(inp, w, b):
layer1 = tf.add(tf.matmul(inp, w['w1']), b['b1'])
layer1 = tf.nn.relu(layer1)
layer2 = tf.matmul(layer1, w['w2']) + b['b2']
return layer2
#Initialize variables
x = tf.placeholder(tf.float32, shape=(batch_size, layer1_input))
y = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
w = {
'w1': tf.Variable(tf.random_normal([layer1_input, hidden_layer1])),
'w2': tf.Variable(tf.random_normal([hidden_layer1, num_labels]))
}
b = {
'b1': tf.Variable(tf.zeros([hidden_layer1])),
'b2': tf.Variable(tf.zeros([num_labels]))
}
init = tf.initialize_all_variables()
train_prediction = tf.nn.softmax(model)
tf_valid_dataset = tf.constant(valid_dataset)
tf_test_dataset = tf.constant(test_dataset)
model = create_model(x, w, b)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model, y))
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
#Process
with tf.Session(graph=graph1) as sess:
tf.initialize_all_variables().run()
total_batch = int(train_dataset.shape[0] / batch_size)
for epoch in range(num_steps):
loss = 0
for i in range(total_batch):
batch_x, batch_y = train_dataset[epoch * batch_size:(epoch+1) * batch_size, :], train_labels[epoch * batch_size:(epoch+1) * batch_size,:]
_, c = sess.run([optimizer, loss], feed_dict={x: batch_x, y: batch_y})
loss = loss + c
loss = loss / total_batch
if epoch % 500 == 0:
print ("Epoch :", epoch, ". cost = {:.9f}".format(avg_cost))
print("Minibatch accuracy: %.1f%%" % accuracy(predictions, batch_labels))
valid_prediction = tf.run(tf_valid_dataset, {x: tf_valid_dataset})
print("Validation accuracy: %.1f%%" % accuracy(valid_prediction.eval(), valid_labels))
test_prediction = tf.run(tf_test_dataset, {x: tf_test_dataset})
print("TEST accuracy: %.1f%%" % accuracy(test_prediction.eval(), test_labels))