I have a large pandas data fame df
. It has quite a few missings. Dropping row/or col-wise is not an option. Imputing medians, means or the most frequent values is not an option either (hence imputation with pandas
and/or scikit
unfortunately doens't do the trick).
I came across what seems to be a neat package called fancyimpute
(you can find it here). But I have some problems with it.
Here is what I do:
#the neccesary imports
import pandas as pd
import numpy as np
from fancyimpute import KNN
# df is my data frame with the missings. I keep only floats
df_numeric = = df.select_dtypes(include=[np.float])
# I now run fancyimpute KNN,
# it returns a np.array which I store as a pandas dataframe
df_filled = pd.DataFrame(KNN(3).complete(df_numeric))
However, df_filled
is a single vector somehow, instead of the filled data frame. How do I get a hold of the data frame with imputations?
Update
I realized, fancyimpute
needs a numpay array
. I hence converted the df_numeric
to a an array using as_matrix()
.
# df is my data frame with the missings. I keep only floats
df_numeric = df.select_dtypes(include=[np.float]).as_matrix()
# I now run fancyimpute KNN,
# it returns a np.array which I store as a pandas dataframe
df_filled = pd.DataFrame(KNN(3).complete(df_numeric))
The output is a dataframe with the column labels gone missing. Any way to retrieve the labels?
df=pd.DataFrame(data=mice.complete(d), columns=d.columns, index=d.index)
The np.array
that is returned by the .complete()
method of the fancyimpute object (be it mice or KNN) is fed as the content (argument data=)
of a pandas dataframe whose cols and indexes are the same as the original data frame.
Add the following lines after your code:
df_filled.columns = df_numeric.columns
df_filled.index = df_numeric.index
I see the frustration with fancy impute and pandas. Here is a fairly basic wrapper using the recursive override method. Takes in and outputs a dataframe - column names intact. These sort of wrappers work well with pipelines.
from fancyimpute import SoftImpute
class SoftImputeDf(SoftImpute):
"""DataFrame Wrapper around SoftImpute"""
def __init__(self, shrinkage_value=None, convergence_threshold=0.001,
max_iters=100,max_rank=None,n_power_iterations=1,init_fill_method="zero",
min_value=None,max_value=None,normalizer=None,verbose=True):
super(SoftImputeDf, self).__init__(shrinkage_value=shrinkage_value,
convergence_threshold=convergence_threshold,
max_iters=max_iters,max_rank=max_rank,
n_power_iterations=n_power_iterations,
init_fill_method=init_fill_method,
min_value=min_value,max_value=max_value,
normalizer=normalizer,verbose=False)
def fit_transform(self, X, y=None):
assert isinstance(X, pd.DataFrame), "Must be pandas dframe"
for col in X.columns:
if X[col].isnull().sum() < 10:
X[col].fillna(0.0, inplace=True)
z = super(SoftImputeDf, self).fit_transform(X.values)
return pd.DataFrame(z, index=X.index, columns=X.columns)