I'm trying to create a new column which returns the mean of values from an existing column in the same df. However the mean should be computed based on a grouping in three other columns.
Out[184]:
YEAR daytype hourtype scenario option_value
0 2015 SAT of_h 0 0.134499
1 2015 SUN of_h 1 63.019250
2 2015 WD of_h 2 52.113516
3 2015 WD pk_h 3 43.126513
4 2015 SAT of_h 4 56.431392
I basically would like to have a new column 'mean' which compute the mean of "option value", when "YEAR", "daytype", and "hourtype" are similar.
I tried the following approach but without success ...
In [185]: o2['premium']=o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_cf'].mean()
TypeError: incompatible index of inserted column with frame index
Here's one way to do it
In [19]: def cust_mean(grp):
....: grp['mean'] = grp['option_value'].mean()
....: return grp
....:
In [20]: o2.groupby(['YEAR', 'daytype', 'hourtype']).apply(cust_mean)
Out[20]:
YEAR daytype hourtype scenario option_value mean
0 2015 SAT of_h 0 0.134499 28.282946
1 2015 SUN of_h 1 63.019250 63.019250
2 2015 WD of_h 2 52.113516 52.113516
3 2015 WD pk_h 3 43.126513 43.126513
4 2015 SAT of_h 4 56.431392 28.282946
So, what was going wrong with your attempt?
It returns an aggregate with different shape from the original dataframe.
In [21]: o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_value'].mean()
Out[21]:
YEAR daytype hourtype
2015 SAT of_h 28.282946
SUN of_h 63.019250
WD of_h 52.113516
pk_h 43.126513
Name: option_value, dtype: float64
Or use transform
In [1461]: o2['premium'] = (o2.groupby(['YEAR', 'daytype', 'hourtype'])['option_value']
.transform('mean'))
In [1462]: o2
Out[1462]:
YEAR daytype hourtype scenario option_value premium
0 2015 SAT of_h 0 0.134499 28.282946
1 2015 SUN of_h 1 63.019250 63.019250
2 2015 WD of_h 2 52.113516 52.113516
3 2015 WD pk_h 3 43.126513 43.126513
4 2015 SAT of_h 4 56.431392 28.282946
You can do it the way you intended by tweaking your code in the following way:
o2 = o2.set_index(['YEAR', 'daytype', 'hourtype'])
o2['premium'] = o2.groupby(level=['YEAR', 'daytype', 'hourtype'])['option_value'].mean()
Why the original error? As explained by John Galt, the data coming out of groupby().mean() is not the same shape (length) as the original DataFrame.
Pandas can handle this cleverly if you first start with the 'grouping columns' in the index. Then it knows how to propogate the mean data correctly.
John's solution follows the same logic, because groupby naturally puts the grouping columns in the index during execution.