I want to calculate conditional probabilites of ratings('A','B','C') in ratings column.
company model rating type
0 ford mustang A coupe
1 chevy camaro B coupe
2 ford fiesta C sedan
3 ford focus A sedan
4 ford taurus B sedan
5 toyota camry B sedan
Output:
Prob(rating=A) = 0.333333
Prob(rating=B) = 0.500000
Prob(rating=C) = 0.166667
Prob(type=coupe|rating=A) = 0.500000
Prob(type=sedan|rating=A) = 0.500000
Prob(type=coupe|rating=B) = 0.333333
Prob(type=sedan|rating=B) = 0.666667
Prob(type=coupe|rating=C) = 0.000000
Prob(type=sedan|rating=C) = 1.000000
Any help, Thanks..!!
You can use .groupby()
and the built-in .div()
:
rating_probs = df.groupby('rating').size().div(len(df))
rating
A 0.333333
B 0.500000
C 0.166667
and the conditional probs:
df.groupby(['type', 'rating']).size().div(len(df)).div(rating_probs, axis=0, level='rating')
coupe A 0.500000
B 0.333333
sedan A 0.500000
B 0.666667
C 1.000000
You need add reindex
for add 0
values for missing pairs:
mux = pd.MultiIndex.from_product([df['rating'].unique(), df['type'].unique()])
s = (df.groupby(['rating', 'type']).count() / df.groupby('rating').count())['model']
s = s.reindex(mux, fill_value=0)
print (s)
A coupe 0.500000
sedan 0.500000
B coupe 0.333333
sedan 0.666667
C coupe 0.000000
sedan 1.000000
Name: model, dtype: float64
And another solution, thanks Zero:
s.unstack(fill_value=0).stack()
You can use groupby
:
In [2]: df = pd.DataFrame({'company': ['ford', 'chevy', 'ford', 'ford', 'ford', 'toyota'],
'model': ['mustang', 'camaro', 'fiesta', 'focus', 'taurus', 'camry'],
'rating': ['A', 'B', 'C', 'A', 'B', 'B'],
'type': ['coupe', 'coupe', 'sedan', 'sedan', 'sedan', 'sedan']})
In [3]: df.groupby('rating').count()['model'] / len(df)
Out[3]:
rating
A 0.333333
B 0.500000
C 0.166667
Name: model, dtype: float64
In [4]: (df.groupby(['rating', 'type']).count() / df.groupby('rating').count())['model']
Out[4]:
rating type
A coupe 0.500000
sedan 0.500000
B coupe 0.333333
sedan 0.666667
C sedan 1.000000
Name: model, dtype: float64