Reducing noise on Data

2019-02-03 20:19发布

问题:

I have 2 lists with data points in them.

x = ["bunch of data points"]
y = ["bunch of data points"]

I've generated a graph using matplotlib in python

import matplotlib.pyplot as plt

plt.plot(x, y, linewidth=2, linestyle="-", c="b")
plt.show()
plt.close()

Would I be able to reduce the noise on the data? Would a Kalman filter work here?

回答1:

It depends how you define the "noise" and how it is caused. Since you didn't provide much information about your case, I'll take your question as "how to make the curve smooth". Kalman filter can do this, but it's too complex, I'd prefer simple IIR filter

import matplotlib.pyplot as plt

mu, sigma = 0, 500

x = np.arange(1, 100, 0.1)  # x axis
z = np.random.normal(mu, sigma, len(x))  # noise
y = x ** 2 + z # data
plt.plot(x, y, linewidth=2, linestyle="-", c="b")  # it include some noise

After filter

from scipy.signal import lfilter

n = 15  # the larger n is, the smoother curve will be
b = [1.0 / n] * n
a = 1
yy = lfilter(b,a,y)
plt.plot(x, yy, linewidth=2, linestyle="-", c="b")  # smooth by filter

lfilter is a function from scipy.signal.

By the way, if you do want to use Kalman filter for smoothing, scipy also provides an example. Kalman filter should also work on this case, just not so necessary.



回答2:

Depending on how much you like to remove the noise, you can also use the Savitzky-Golay filter from scipy.

The following takes the example from @lyken-syu:

import matplotlib.pyplot as plt
import numpy as np
mu, sigma = 0, 500
x = np.arange(1, 100, 0.1)  # x axis
z = np.random.normal(mu, sigma, len(x))  # noise
y = x ** 2 + z # data
plt.plot(x, y, linewidth=2, linestyle="-", c="b")  # it include some noise

and applies the Savitzky-Golay filter

from scipy.signal import savgol_filter
w = savgol_filter(y, 101, 2)
plt.plot(x, w, 'b')  # high frequency noise removed

Increasing the window_length to 501:

Read more about the filter here